Estimation of local heat transfer coefficient in coiled tubes under inverse heat conduction problem approach

2014 ◽  
Vol 59 ◽  
pp. 246-251 ◽  
Author(s):  
Fabio Bozzoli ◽  
Luca Cattani ◽  
Sara Rainieri ◽  
Giorgio Pagliarini
2021 ◽  
Vol 2116 (1) ◽  
pp. 012110
Author(s):  
L Cattani ◽  
F Bozzoli ◽  
V Ayel ◽  
C Romestant ◽  
Y Bertin

Abstract The aim of this work is to estimate the local heat flux and heat transfer coefficient for the case of evaporation of thin liquid film deposited on capillary heated channel: it plays a fundamental role in the two-phase heat transfer processes inside mini-channels. In the present analysis it is investigated a semi-infinite slug flow (one liquid slug followed by one single vapour bubble) in a heated capillary copper tube. The estimation procedure here adopted is based on the solution of the inverse heat conduction problem within the wall domain adopting, as input data, the temperature field on the external tube wall acquired by means of infrared thermography.


1999 ◽  
Author(s):  
Patrick H. Oosthuizen ◽  
David Naylor

Abstract A transient method, based on an inverse heat conduction solution, for experimentally determining the distribution of local heat transfer rates on the surface of a body has been numerically evaluated. The particular interest is in situations in which the heat transfer coefficients are relatively low and in which there are relatively large changes in the heat transfer coefficient over the surface of the body being considered. In the method, a solid body of the shape being investigated, constructed from a low conductivity material, is heated to a uniform temperature and then exposed to a test flow. Using a layer of temperature sensitive crystal placed over the surface of this model or by other means, the time taken for the temperature at a relatively small number of selected points on the surface to reach a selected value is determined. The surface heat flux rate distribution is then found from these measured times using a simple inverse heat conduction method. The feasibility of this method has been evaluated by considering relatively low Reynolds number flow over a square cylinder and natural convective flow over a circular cylinder. Known local heat transfer coefficient distributions for these situation have been applied as boundary conditions in the numerical solution of the transient cooling of a the “experimental” models. These solutions are used to generate “measured” data i.e. to generate simulated experimental data. The inverse heat transfer method has then been used to predict the local heat transfer coefficient distribution over the surface and the predicted and input distributions have been compared. The effect of uncertainties in the experimental measurements on this comparison has then been evaluated using various assumed uncertainty values. The results of the study indicate that the proposed method of measuring local heat transfer coefficients is capable of giving results of good accuracy.


2015 ◽  
Vol 23 (1) ◽  
Author(s):  
F. Bozzoli ◽  
L. Cattani ◽  
G. Pagliarini ◽  
S. Rainieri

AbstractThis paper presents and assesses an inverse heat conduction problem (IHCP) solution procedure which was developed to determine the local convective heat transfer coefficient along the circumferential coordinate at the inner wall of a coiled pipe by applying the filtering technique approach to infrared temperature maps acquired on the outer tube’s wall. The data−processing procedure filters out the unwanted noise from the raw temperature data to enable the direct calculation of its Laplacian which is embedded in the formulation of the inverse heat conduction problem. The presented technique is experimentally verified using data that were acquired in the laminar flow regime that is frequently found in coiled−tube heat−exchanger applications. The estimated convective heat transfer coefficient distributions are substantially consistent with the available numerical results in the scientific literature.


Sign in / Sign up

Export Citation Format

Share Document