Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger

2017 ◽  
Vol 88 ◽  
pp. 37-45 ◽  
Author(s):  
Adnan Mohammed Hussein
2018 ◽  
Vol 22 (02) ◽  
pp. 150-165
Author(s):  
Mushtaq Ismael Hasan ◽  
◽  
Mohammed Dakhel Salman ◽  
Ayat Lateef Thajeel ◽  
◽  
...  

2021 ◽  
Vol 21 (2) ◽  
pp. 148-163
Author(s):  
Mawj K. Qasim ◽  
Hadi O. Basher ◽  
Mohammed D. Salman

This study aims to enhancement of heat transfer in double pipe heat exchanger by improving the thermal properties of base fluid which is water by adding AL2O3-Fe2O3 nanoparticles to the water. Al2O3-Fe2O3/water hybrid Nanofluid were examined experimentally and numerically at different flow rates ranging between (3 -7) Lpm at temperature of 25°C in an external tube while there was a hot water at a temperature of 60°C and a flow rate ranged between (3 – 5) Lpm running in the central tube of a double pipe counter heat exchanger. Also, the effect of various concentrations ranged between (0.05, 0.1, 0.15, 0.2, 0.25 and 0.3%) of Al2O3-Fe2O3 nanoparticles dispersed in water on the rate of heat transfer, friction coefficient were verified experimentally and numerically . The ratio of Al2O3-Fe2O3 is 0.5:0.5. The experimental and numerical study indicated that with the rate of heat transfer increases when the concentration of suspended nanoparticles in the base fluid increases , but on the other hand, the skin friction coefficient and pressure drop increases as well with increasing the concentration of nanoparticles. The maximum enhancement in heat transfer for AL2O3-Fe2O3 is about 6 % . The results from the experimental study were largely consistent with the numerical results.


Author(s):  
Fatemeh Nasirzadehroshenin ◽  
Heydar Maddah ◽  
Hossein Sakhaeinia ◽  
Alireza pourmozafari

2019 ◽  
Vol 8 (4) ◽  
pp. 5892-5898

Nanofluids have good potential in enhancing the heat transfer performance of conventional fluids. In the present paper, the heat transfer performance of Fe3O4 and its Hybrid mixture with Fe3O4 and SiC nanoparticles in the volume ratio of 50:50 in 20:80 Ethylene Glycol (EG) –Water as base fluid are determined experimentally and the results are compared with that of the base fluid. The volume concentration range of nanoparticles considered in the analysis is 0.01% to 0.08%. The experiment is carried under turbulent flow conditions with Reynolds number ranging from 5000 to 20000 in a Double Pipe Heat Exchanger (DPHE) with U-bend. Results indicate that the thermal conductivity of hybrid nanofluid is higher by 16.19% and its viscosity is lower by 11.6% compared to Fe3O4 /20:80 EG-Water nanofluid at an operating temperature of 45°C. The heat transfer coefficient and overall performance of hybrid nanofluid are better than Fe3O4 /20:80 EG-Water nanofluid. The overall performance of Hybrid nanofluid is 27.75% better than that of Fe3O4 /20:80 EG-Water nanofluid.


Sign in / Sign up

Export Citation Format

Share Document