scholarly journals The influence of running shoes on inter-segmental foot kinematics

2016 ◽  
Vol 22 (2) ◽  
pp. 17
Author(s):  
B. Langley ◽  
M. Cramp ◽  
S. Morrison
2017 ◽  
Vol 9 (sup1) ◽  
pp. S22-S23
Author(s):  
Ben Langley ◽  
Mary Cramp ◽  
Stewart C. Morrison

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Noor Arifah Azwani Abdul Yamin ◽  
Khairul Salleh Basaruddin ◽  
Ahmad Faizal Salleh ◽  
Mohammad Shahril Salim ◽  
Wan Zuki Azman Wan Muhamad

Objective. The aim of this study was to investigate the effects of surface stiffness on multisegment foot kinematics and temporal parameters during running. Methods. Eighteen male subjects ran on three different surfaces (i.e., concrete, artificial grass, and rubber) in both heeled running shoes (HS) and minimal running shoes (MS). Both these shoes had dissimilar sole profiles. The heeled shoes had a higher sole at the heel, a thick base, and arch support, whereas the minimal shoes had a flat base sole. Indeed, the studied biomechanical parameters responded differently in the different footwear during running. Subjects ran in recreational mode speed while 3D foot kinematics (i.e., joint rotation and peak medial longitudinal arch (MLA) angle) were determined using a motion capture system (Qualysis, Gothenburg, Sweden). Information on stance time and plantar fascia strain (PFS) was also collected. Results. Running on different surface stiffness was found to significantly affect the peak MLA angles and stance times for both HS and MS conditions. However, the results showed that the joint rotation angles were not sensitive to surface stiffness. Also, PFS showed no relationship with surface stiffness, as the results were varied as the surface stiffness was changed. Conclusion. The surface stiffness significantly contributed towards the effects of peak MLA angle and stance time. These findings may enhance the understanding of biomechanical responses on various running surfaces stiffness in different shoe conditions.


2018 ◽  
Vol 10 (2) ◽  
pp. 83-93 ◽  
Author(s):  
Ben Langley ◽  
Mary Cramp ◽  
Stewart C. Morrison

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 774-775
Author(s):  
Tryntsje Fokkema ◽  
Jereme Outerleys ◽  
Alessandra Bento Matias ◽  
Adam C. Clansey ◽  
Irene S. Davis

2016 ◽  
Vol 13 (119) ◽  
pp. 20160174 ◽  
Author(s):  
Luke A. Kelly ◽  
Glen A. Lichtwark ◽  
Dominic J. Farris ◽  
Andrew Cresswell

The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (−25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot–shoe interaction to explain these novel findings.


Author(s):  
Rodrigo Cueva ◽  
Guillem Rufian ◽  
Maria Gabriela Valdes

The use of Customer Relationship Managers to foster customers loyalty has become one of the most common business strategies in the past years.  However, CRM solutions do not fill the abundance of happily ever-after relationships that business needs, and each client’s perception is different in the buying process.  Therefore, the experience must be precise, in order to extend the loyalty period of a customer as much as possible. One of the economic sectors in which CRM’s have improved this experience is retailing, where the personalized attention to the customer is a key factor.  However, brick and mortar experiences are not enough to be aware in how environmental changes could affect the industry trends in the long term.  A base unified theoretical framework must be taken into consideration, in order to develop an adaptable model for constructing or implementing CRMs into companies. Thanks to this approximation, the information is complemented, and the outcome will increment the quality in any Marketing/Sales initiative. The goal of this article is to explore the different factors grouped by three main domains within the impact of service quality, from a consumer’s perspective, in both on-line and off-line retailing sector.  Secondly, we plan to go a step further and extract base guidelines about previous analysis for designing CRM’s solutions focused on the loyalty of the customers for a specific retailing sector and its product: Sports Running Shoes.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3277
Author(s):  
Juan Luis Florenciano Restoy ◽  
Jordi Solé-Casals ◽  
Xantal Borràs-Boix

The objectives of this study were to determine the amplitude of movement differences and asymmetries between feet during the stance phase and to evaluate the effects of foot orthoses (FOs) on foot kinematics in the stance phase during running. In total, 40 males were recruited (age: 43.0 ± 13.8 years, weight: 72.0 ± 5.5 kg, height: 175.5 ± 7.0 cm). Participants ran on a running treadmill at 2.5 m/s using their own footwear, with and without the FOs. Two inertial sensors fixed on the instep of each of the participant’s footwear were used. Amplitude of movement along each axis, contact time and number of steps were considered in the analysis. The results indicate that the movement in the sagittal plane is symmetric, but that it is not in the frontal and transverse planes. The right foot displayed more degrees of movement amplitude than the left foot although these differences are only significant in the abduction case. When FOs are used, a decrease in amplitude of movement in the three axes is observed, except for the dorsi-plantar flexion in the left foot and both feet combined. The contact time and the total step time show a significant increase when FOs are used, but the number of steps is not altered, suggesting that FOs do not interfere in running technique. The reduction in the amplitude of movement would indicate that FOs could be used as a preventive tool. The FOs do not influence the asymmetry of the amplitude of movement observed between feet, and this risk factor is maintained. IMU devices are useful tools to detect risk factors related to running injuries. With its use, even more personalized FOs could be manufactured.


1978 ◽  
Vol 78 (10) ◽  
pp. 1660-1661
Author(s):  
Jann B. Logsdon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document