running shoes
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 75)

H-INDEX

27
(FIVE YEARS 4)

Author(s):  
Laurent Malisoux ◽  
Paul Gette ◽  
Anne Backes ◽  
Nicolas Delattre ◽  
Daniel Theisen

2021 ◽  
Vol 11 (24) ◽  
pp. 12144
Author(s):  
Masen Zhang ◽  
Huijuan Shi ◽  
Hui Liu ◽  
Xinglong Zhou

The heel-to-toe drop of running shoes is a key parameter influencing lower extremity kinematics during running. Previous studies testing running shoes with lower or larger drops generally used minimalist or maximalist shoes, where the factors outside of the drop may lead to the observed changes in running biomechanics. Therefore, our aim was to compare the strike patterns, impact force, and lower extremity biomechanics when running in shoes that varied only in their drops. Eighteen habitual rearfoot strikers performed trials wearing running shoes with four drop conditions: 15 mm, 10 mm, 5 mm, and without a drop. Three-dimensional (3D) tracks of the reflective markers and impact force were synchronously collected using a video graphic acquisition system and two force plates. The biomechanical parameters were compared among the four drop conditions using one-way ANOVA of repeated measures. A greater foot inclination angle (p = 0.001, ηp2 = 0.36) at initial contact and a lower vertical loading rate (p = 0.002, ηp2 = 0.32) during the standing phase were found when running in shoes with large drops compared with running in shoes without a drop. Running in shoes with large drops, as opposed to without, significantly increased the peak knee extension moment (p = 0.002, ηp2 = 0.27), but decreased the peak ankle eversion moment (p = 0.001, ηp2 = 0.35). These findings suggest that the heel-to-toe drop of running shoes significantly influences the running pattern and the loading on lower extremity joints. Running shoes with large drops may be disadvantageous for runners with knee weakness and advantageous for runners with ankle weakness.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7814
Author(s):  
Javier Gamez-Paya ◽  
Lirios Dueñas ◽  
Anna Arnal-Gómez ◽  
Josep Carles Benítez-Martínez

Foot-strike and the associated load rate are factors related to overuse injuries in runners. The purpose of this study was to analyse structural and functional changes in runners using floating heel running shoes, compared with runners using conventional footwear. A randomised control trial was conducted. Twenty runners with overuse injuries were followed over a 12-week gait retraining programme using floating heel running shoes or their conventional footwear. Pain was measured with pressure pain thresholds (PPTs), structural changes were measured with ultrasonography, and severity and impact of injury was scored on the Oslo Sports Trauma Research Centre Overuse Injury Questionnaire (OSTRC-O). Statistical differences were found between groups after the intervention (p < 0.001), with a medium size effect SE = 0.8, and the floating heel running shoes group reached higher PPTs values. Participants using floating heel running shoes showed higher OSTRC-O scores than those using their conventional footwear (p < 0.05), with higher scores after the intervention (p < 0.05). A 12-week gait retraining programme using floating heel running shoes had positive effects on the injury recovery process when compared to the use of conventional footwear, with significant differences in terms of pain and impact on sports activity.


2021 ◽  
Author(s):  
Jan Plesek ◽  
Joseph Hamill ◽  
Denisa Blaschova ◽  
Julia Freedman Silvernail ◽  
Daniel Jandacka

Abstract Background Previous research indicated that running barefoot or in minimalist shoes led to lower impact loading in an adolescent and adult population. Running as fundamental locomotor skill significantly develops during early childhood (preschool age). However, no study has focused on effect of footwear condition on lower limb impact loading during running in this age. Therefore, the purpose of this study was to assess effect of footwear conditions (barefoot, minimalist and standard running shoes) on running impact loading in the preschool years. Methods Fourty-eight habitually shod preschool children were divided into 4 age groups. Children performed simple running game in 3 different footwear conditions (random counter-balanced order), 3-dimensional biomechanical analysis were carried out during overground running. The key dependent variables included vertical ground reaction force (VGRF) and vertical instantaneous loading rate (VILR). Statistical parametric mapping was performed to reveal possible differences in VGRF and one-way repeated measures ANOVA in VILR. Results Three-year-old children displayed significantly lower impact peak of VGRF in barefoot condition compared to minimalist (3-7% stance, P = 0.012) and standard running shoes (7-11% stance, P = 0.009). Furthermore, in 3-year-old in minimalist shoes had higher loading than in standard running shoes (0-4% stance, P = 0.007). There were also differences in VILR, where 3-year-old had lower loading in barefoot than in minimalist (P = 0.010, d = 1.19) or standard running shoes (P = 0.045, d = 0.98). No differences were found in older children. Conclusion Running in minimalist shoes did not imitate barefoot running and did not lower impact forces compared to standard running shoes in 3-year-old children. On the contrary, increased loading was observed in minimalist shoes in early running developmental stages. Professionals who work with children should consider effect of minimalist shoes on impact loading (running on hard surfaces).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Te Miao ◽  
Peihua Wang ◽  
Nan Zhang ◽  
Yuguo Li

AbstractThe association between the footwear microclimate and microbial community on the foot plantar skin was investigated by experiments with three participants. Novel methods were developed for measuring in-shoe temperature and humidity at five footwear regions, as well as the overall ventilation rate inside the footwear. Three types of footwear were tested including casual shoes, running shoes, and perforated shoes for pairwise comparison of footwear microclimate and corresponding microbial community on the skin. The major findings are as follows: (1) footwear types make a significant difference to in-shoe temperature at the instep region with the casual shoes sustaining the warmest of all types; (2) significant differences were observed in local internal absolute humidity between footwear types, with the casual shoes sustaining the highest level of humidity at most regions; (3) the perforated shoes provided the highest ventilation rate, followed by running and casual shoes, and the faster the gait, the larger the discrepancy in ventilation rate between footwear types; (4) the casual shoes seemed to provide the most favorable internal environment for bacterial growth at the distal plantar skin; and (5) the bacterial growth at the distal plantar skin showed a positive linear correlation with the in-shoe temperature and absolute humidity, and a negative linear correlation with the ventilation rate. The ventilation rate seemed to be a more reliable indicator of the bacterial growth. Above all, we can conclude that footwear microclimate varies in footwear types, which makes contributions to the bacterial growth on the foot plantar skin.


Biomechanics ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 281-289
Author(s):  
Rodrigo R. Bini ◽  
Daniel D. Kilpp ◽  
Pedro A. D. S. Júnior ◽  
Adriane M. D. S. Muniz

It is unclear whether military shoes (combat boots and sports shoes) attenuate loading rate or affect force transfer during walking. Therefore, this study compared ground reaction forces (GRF) related to impact and force transfer between combat boots, military sports shoes, and running shoes. Ten army recruits walked over a walkway with two force plates embedded. GRF were measured when walking barefoot (for data normalisation) and with combat boots, military sports shoes, and running shoes. Loading rate, first and second peak forces, and push-off rate of force were computed along with temporal analysis of waveforms. Reduced loading rate was observed for the running shoe compared to the combat boot (p = 0.02; d = 0.98) and to the military sports shoe (p = 0.04; d = 0.92). The running shoe elicited a smaller second peak force than the combat boot (p < 0.01; d = 0.83). Walking with military shoes and combat boots led to larger force transfer than running shoes, potentially due to harder material used in midsole composition (i.e., styrene-butadiene rubber). Combat boots did not optimise load transmission and may lead, in a long-term perspective, to greater injury risk.


Author(s):  
Amir Ali Jafarnezhadgero ◽  
Ehsan Fakhri ◽  
Urs Granacher

Abstract Background To improve propulsion during running, athletes often wear spike shoes designed for training and/or competition. Running with spike shoes may cause pain and/or injuries. To address this problem, a modified spike shoe was tested. This study aimed to evaluate the effects of running with dual-versus single-stiffness spike running shoes on running mechanics in long-distance runners with pronated feet. Methods Sixteen male elite (national competitive level) runners (5000 or 10,000 m) aged 28.2 ± 2.5 years with pronated feet volunteered to participate in this study. To be included, participants had to have achieved personal best race times over 5- and/or 10-km races under 17 or 34 min during official running competitions. All participants were heel strikers and had a history of 11.2 ± 4.2 years of training. For the assessment of running kinetics, a force plate was imbedded into a walkway. Running kinematics were recorded using a Vicon-motion-capture system. Nike Zoom Rival shoes (Nike, Nike Zoom Rival, USA) were selected and adapted according to spike softness and stiffness. Participants ran at a constant speed of ~4.0 m/s across the walkway with both shoe conditions in randomized order. Six trials were recorded per condition. The main outcomes included peak ground reaction forces and their time-to-peak, average and instantaneous vertical loading rates, free moments, and peak ankle eversion angles. Results Paired t-tests revealed significantly lower lateral (p = 0.021, d = 0.95) and vertical (p = 0.010, d = 1.40) forces at heel contact during running with dual-stiffness spike shoes. Running with dual-stiffness spike shoes resulted in a significantly longer time-to-peak vertical (p = 0.004, d = 1.40) force at heel contact. The analysis revealed significantly lower average (p = 0.005, d = 0.46) and instantaneous (p = 0.021, d = 0.49) loading rates and peak negative free moment amplitudes (p = 0.016, d = 0.81) when running with dual-stiffness spike shoes. Finally, significantly lower peak ankle eversion angles were observed with dual-stiffness spike shoes (p < 0.001, d = 1.29). Conclusions Running in dual- compared with single-stiffness spike distance running shoes resulted in lower loading rates, free moment amplitudes, and peak ankle eversion angles of long-distance runners with pronated feet.


Author(s):  
Rodrigo Rico Bini ◽  
Daniel D. Kilpp ◽  
Pedro D. Junior ◽  
Adriane D. Muniz

It is unclear whether military shoes (combat boots and sports shoes) attenuate loading rate or affect force transfer during walking. Therefore, this study compared ground reaction forces (GRF) related to impact and force transfer between combat boots, military sports shoes and running shoes. Ten army recruits walked over a walkway with two force plates embedded. GRF were measured when walking barefoot (for data normalization) and with combat boots, military sports shoes and running shoes. Loading rate, first and second peak forces and push-off rate of force were computed along with temporal analysis of waveforms. Reduced loading rate was observed for the running shoe compared to the combat boot (p = 0.02 and d = 0.98) and to the military sports shoe (p = 0.04 and d = 0.92). The running shoe elicited a smaller second peak force than the combat boot (p &lt; 0.01 and d = 0.83). Walking with military shoes and combat boots led to larger force transfer then running shoes potentially due to harder material used in midsole composition (i.e. styrene-butadiene rubber). These results could lead to a potentially larger risk of injuries while long duration walking in military shoes and boots compared to traditional running shoes.


Sign in / Sign up

Export Citation Format

Share Document