Resveratrol analog, N-(4-methoxyphenyl)-3,5-dimethoxybenzamide induces G2/M phase cell cycle arrest and apoptosis in HeLa human cervical cancer cells

2019 ◽  
Vol 124 ◽  
pp. 101-111 ◽  
Author(s):  
Kyung-Won Lee ◽  
Kyung-Sook Chung ◽  
Jeong-Hun Lee ◽  
Jung-Hye Choi ◽  
Sang Yoon Choi ◽  
...  
2020 ◽  
Vol 19 (7) ◽  
pp. 1423-1428
Author(s):  
Juan Li ◽  
Yuanyuan Chen

Purpose: To determine the anticancer effect of a pentacyclic triterpenoid, isomultiflorenol, against human cervical cancer.Methods: The proliferation of cancer cells was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) assay. Cell viability was measured with colony forming assay, while flow cytometry was used to study phase distribution in cancer cell mitosis. Electron microscopy was employed for the determination of autophagy induction in the cancer cells, while western blotting was used to assay protein expressions.Results: Isomultiflorenol significantly (p < 0.05) inhibited the proliferation and viability of cervical cancer cells in a concentration-dependent manner. The IC50 of isomultiflorenol was 10 μM for HeLa cells, and 90 μM for normal EV304 cells. The anti-proliferative effects were exerted as a result of arrest of HeLa cells at G2/M phase. The G2/M phase cells increased from 10.34 % in control to 30.21 % on treatment with 20 μM isomultiflorenol. Furthermore, administration of isomultiflorenol led to induction of cancer cell autophagy via mitochondrial apoptotic signaling.Conclusion: Isomultiflorenol inhibits human cervical cancer cells in vitro by inducing cell cycle arrest and autophagy. Thus, it is a potential lead molecule in the development of cervical cancer chemotherapy. Keywords: Cervical cancer, Terpenoids, Isomultiflorenol, Autophagy, Cell cycle arrest, Apoptosis


2020 ◽  
Vol 21 (20) ◽  
pp. 7445 ◽  
Author(s):  
Sai-Fung Chung ◽  
Chi-Fai Kim ◽  
Ho-Yin Chow ◽  
Hiu-Chi Chong ◽  
Suet-Ying Tam ◽  
...  

With our recent success in developing a recombinant human arginase drug against broad-spectrum cancer cell lines, we have explored the potential of a recombinant Bacillus caldovelox arginase mutant (BCA-M) for human cervical cancer treatment. Our studies demonstrated that BCA-M significantly inhibited the growth of human cervical cancer cells in vitro regardless of argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) expression. Drug susceptibilities correlate well with the expressions of major urea cycle genes and completeness of L-arginine regeneration pathways. With the expressions of ASS and ASL genes conferring resistance to L-arginine deiminase (ADI) which is undergoing Phase III clinical trial, BCA-M offers the advantage of a broader spectrum of susceptible cancer cells. Mechanistic studies showed that BCA-M inhibited the growth of human cervical cancer cells by inducing apoptosis and cell cycle arrest at S and/or G2/M phases. Our results also displayed that autophagy served as a protective mechanism, while the growth inhibitory effects of BCA-M could be enhanced synergistically by its combination to the autophagy inhibitor, chloroquine (CQ), on human cervical cancer cells.


Sign in / Sign up

Export Citation Format

Share Document