Single-cell RNA sequencing of mouse neural stem cell differentiation reveals adverse effects of cadmium on neurogenesis

2021 ◽  
Vol 148 ◽  
pp. 111936
Author(s):  
Bo Song ◽  
Guiya Xiong ◽  
Huan Luo ◽  
Zhenzi Zuo ◽  
Zhijun Zhou ◽  
...  
2011 ◽  
Vol 6 (3) ◽  
pp. 288-296 ◽  
Author(s):  
Maria Francisca Eiriz ◽  
Sofia Grade ◽  
Alexandra Rosa ◽  
Sara Xapelli ◽  
Liliana Bernardino ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
pp. 163-181
Author(s):  
Guangdun Peng ◽  
Guizhong Cui ◽  
Jincan Ke ◽  
Naihe Jing

Embryonic development and stem cell differentiation provide a paradigm to understand the molecular regulation of coordinated cell fate determination and the architecture of tissue patterning. Emerging technologies such as single-cell RNA sequencing and spatial transcriptomics are opening new avenues to dissect cell organization, the divergence of morphological and molecular properties, and lineage allocation. Rapid advances in experimental and computational tools have enabled researchers to make many discoveries and revisit old hypotheses. In this review, we describe the use of single-cell RNA sequencing in studies of molecular trajectories and gene regulation networks for stem cell lineages, while highlighting the integratedexperimental and computational analysis of single-cell and spatial transcriptomes in the molecular annotation of tissue lineages and development during postimplantation gastrulation.


Sign in / Sign up

Export Citation Format

Share Document