Anti-mullerian hormone (AMH), Inhibin B, follicle stimulating hormone (FSH) and antral follicle count (AFC); which one is the best predictor of ovarian response in assisted reproductive technology?

2009 ◽  
Vol 92 (3) ◽  
pp. S168 ◽  
Author(s):  
R. Peymani ◽  
S. Najmabadi
2020 ◽  
Author(s):  
Huiyu Xu ◽  
Li Shi ◽  
Guoshuang Feng ◽  
Zhen Xiao ◽  
Lixue Chen ◽  
...  

BACKGROUND Previously, we reported a model for assessing ovarian reserves using 4 predictors: anti-Müllerian hormone (AMH) level, antral follicle count (AFC), follicle-stimulating hormone (FSH) level, and female age. This model is referred as the AAFA (anti-Müllerian hormone level–antral follicle count–follicle-stimulating hormone level–age) model. OBJECTIVE This study aims to explore the possibility of establishing a model for predicting ovarian reserves using only 3 factors: AMH level, FSH level, and age. The proposed model is referred to as the AFA (anti-Müllerian hormone level–follicle-stimulating hormone level–age) model. METHODS Oocytes from ovarian cycles stimulated by gonadotropin-releasing hormone antagonist were collected retrospectively at our reproductive center. Poor ovarian response (<5 oocytes retrieved) was defined as an outcome variable. The AFA model was built using a multivariable logistic regression analysis on data from 2017; data from 2018 were used to validate the performance of AFA model. Measurements of the area under the curve (AUC), sensitivity, specificity, positive predictive value, and negative predicative value were used to evaluate the performance of the model. To rank the ovarian reserves of the whole population, we ranked the subgroups according to the predicted probability of poor ovarian response and further divided the 60 subgroups into 4 clusters, A-D, according to cut-off values consistent with the AAFA model. RESULTS The AUCs of the AFA and AAFA models were similar for the same validation set, with values of 0.853 (95% CI 0.841-0.865) and 0.850 (95% CI 0.838-0.862), respectively. We further ranked the ovarian reserves according to their predicted probability of poor ovarian response, which was calculated using our AFA model. The actual incidences of poor ovarian response in groups from A-D in the AFA model were 0.037 (95% CI 0.029-0.046), 0.128 (95% CI 0.099-0.165), 0.294 (95% CI 0.250-0.341), and 0.624 (95% CI 0.577-0.669), respectively. The order of ovarian reserve from adequate to poor followed the order from A to D. The clinical pregnancy rate, live-birth rate, and specific differences in groups A-D were similar when predicted using the AFA and AAFA models. CONCLUSIONS This AFA model for assessing the true ovarian reserve was more convenient, cost-effective, and objective than our original AAFA model.


10.2196/19096 ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. e19096 ◽  
Author(s):  
Huiyu Xu ◽  
Li Shi ◽  
Guoshuang Feng ◽  
Zhen Xiao ◽  
Lixue Chen ◽  
...  

Background Previously, we reported a model for assessing ovarian reserves using 4 predictors: anti-Müllerian hormone (AMH) level, antral follicle count (AFC), follicle-stimulating hormone (FSH) level, and female age. This model is referred as the AAFA (anti-Müllerian hormone level–antral follicle count–follicle-stimulating hormone level–age) model. Objective This study aims to explore the possibility of establishing a model for predicting ovarian reserves using only 3 factors: AMH level, FSH level, and age. The proposed model is referred to as the AFA (anti-Müllerian hormone level–follicle-stimulating hormone level–age) model. Methods Oocytes from ovarian cycles stimulated by gonadotropin-releasing hormone antagonist were collected retrospectively at our reproductive center. Poor ovarian response (<5 oocytes retrieved) was defined as an outcome variable. The AFA model was built using a multivariable logistic regression analysis on data from 2017; data from 2018 were used to validate the performance of AFA model. Measurements of the area under the curve (AUC), sensitivity, specificity, positive predictive value, and negative predicative value were used to evaluate the performance of the model. To rank the ovarian reserves of the whole population, we ranked the subgroups according to the predicted probability of poor ovarian response and further divided the 60 subgroups into 4 clusters, A-D, according to cut-off values consistent with the AAFA model. Results The AUCs of the AFA and AAFA models were similar for the same validation set, with values of 0.853 (95% CI 0.841-0.865) and 0.850 (95% CI 0.838-0.862), respectively. We further ranked the ovarian reserves according to their predicted probability of poor ovarian response, which was calculated using our AFA model. The actual incidences of poor ovarian response in groups from A-D in the AFA model were 0.037 (95% CI 0.029-0.046), 0.128 (95% CI 0.099-0.165), 0.294 (95% CI 0.250-0.341), and 0.624 (95% CI 0.577-0.669), respectively. The order of ovarian reserve from adequate to poor followed the order from A to D. The clinical pregnancy rate, live-birth rate, and specific differences in groups A-D were similar when predicted using the AFA and AAFA models. Conclusions This AFA model for assessing the true ovarian reserve was more convenient, cost-effective, and objective than our original AAFA model.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2911 ◽  
Author(s):  
Peter Humaidan ◽  
Carlo Alviggi ◽  
Robert Fischer ◽  
Sandro C. Esteves

In reproductive medicine little progress has been achieved regarding the clinical management of patients with a reduced ovarian reserve or poor ovarian response (POR) to stimulation with exogenous gonadotropins -a frustrating experience for clinicians as well as patients. Despite the efforts to optimize the definition of this subgroup of patients, the existing POR criteria unfortunately comprise a heterogeneous population and, importantly, do not offer any recommendations for clinical handling. Recently, the POSEIDON group (Patient-Oriented Strategies Encompassing IndividualizeD Oocyte Number) proposed a new stratification of assisted reproductive technology (ART) in patients with a reduced ovarian reserve or unexpected inappropriate ovarian response to exogenous gonadotropins. In brief, four subgroups have been suggested based on quantitative and qualitative parameters, namely, i. Age and the expected aneuploidy rate; ii. Ovarian biomarkers (i.e. antral follicle count [AFC] and anti-Müllerian hormone [AMH]), and iii. Ovarian response - provided a previous stimulation cycle was performed. The new classification introduces a more nuanced picture of the “low prognosis patient” in ART, using clinically relevant criteria to guide the physician to most optimally manage this group of patients. The POSEIDON group also introduced a new measure for successful ART treatment, namely, the ability to retrieve the number of oocytes needed for the specific patient to obtain at least one euploid embryo for transfer. This feature represents a pragmatic endpoint to clinicians and enables the development of prediction models aiming to reduce the time-to-pregnancy (TTP). Consequently, the POSEIDON stratification should not be applied for retrospective analyses having live birth rate (LBR) as endpoint. Such an approach would fail as the attribution of patients to each Poseidon group is related to specific requirements and could only be made prospectively. On the other hand, any prospective approach (i.e. RCT) should be performed separately in each specific group.


Sign in / Sign up

Export Citation Format

Share Document