Invasive hyphal growth: An F-actin depleted zone is associated with invasive hyphae of the oomycetes Achlya bisexualis and Phytophthora cinnamomi

2006 ◽  
Vol 43 (5) ◽  
pp. 357-365 ◽  
Author(s):  
Sophie K. Walker ◽  
Kenny Chitcholtan ◽  
YuPing Yu ◽  
Gabrielle M. Christenhusz ◽  
Ashley Garrill
1978 ◽  
Vol 26 (2) ◽  
pp. 169 ◽  
Author(s):  
PN Byrt ◽  
AA Holland

Young Eucalyptus seedlings were raised axenically and infected with small numbers of Phytophthora cinnamomi zoospores at the root tip. The linear extent of hyphal growth up the root was measured from 2 to 4 days and shown to be significantly greater in the highly susceptible species of Eucalyptus when compared with those which are less susceptible in the field. Sporangium production on the root was observed on both highly susceptible and less susceptible species in the presence of free water and certain salts.


Author(s):  
John S. Gardner ◽  
W. M. Hess

Powdery mildews are characterized by the appearance of spots or patches of a white to grayish, powdery, mildewy growth on plant tissues, entire leaves or other organs. Ervsiphe cichoracearum, the powdery mildew of cucurbits is among the most serious parasites, and the most common. The conidia are formed similar to the process described for Ervsiphe graminis by Cole and Samson. Theconidial chains mature basipetally from a short, conidiophore mother-cell at the base of the fertile hypha which arises holoblastically from the conidiophore. During early development it probably elongates by polar-tip growth like a vegetative hypha. A septum forms just above the conidiophore apex. Additional septa develop in acropetal succession. However, the conidia of E. cichoracearum are more doliform than condia from E. graminis. The purpose of these investigations was to use scanning electron microscopy (SEM) to demonstrate the nature of hyphal growth and conidial formation of E. cichoracearum on field-grown squash leaves.


1977 ◽  
Vol 25 (5) ◽  
pp. 483 ◽  
Author(s):  
N Malajczuk ◽  
AJ Mccomb ◽  
CA Parker

On lateritic podzolic soils in Western Australia Eucalyptus calophylla is resistant to Phytophthora cinnamomi whereas Eucalyptus marginata is susceptible and eventually killed by the pathogen. On loam soils both eucalypts are resistant. Possible mechanisms for resistance of E. calophylla in lateritic soil and the inhibitory action of loam soils were investigated. Aseptically raised eucalypt seedlings succumbed to infection in liquid culture tubes. The mechanism of infection was compared by light and electron microscopy which showed similar fungal invasion and penetration into roots of both eucalypt species. Vegetative hyphae initially penetrated intercellularly and proliferated rapidly within cortical and stelar tissue. Intracellular invasion of these tissues occurred 48hr after initial infection through dissolution of the host cell wall. Chlamydospores were formed within a number of cortical cells. Unsuberized roots of mature trees produced aseptically showed reactions to invasion similar to those of the eucalypt seedling roots. Suberized roots were not invaded. The addition of small quantities of lateritic soil to sterile sand so as to introduce soil micro-organisms without altering the chemical and physical status of the sand, and subsequent inoculation of the sand with P.cinnamomi, resulted in a reduction of root damage on both eucalypts when compared with seedlings raised in sterile sand. Roots of E.calophylla were less severely damaged than those of E.marginata. The addition of small quantities of loam soil significantly reduced root damage in seedlings of both species. These results parallel both pot experiments and field observations, and suggest that microorganisms of the rhizosphere may be an important factor in the resistance of E.calophylla to infection, and in the inhibitory effect of loam soil on P.cinnamomi.


2011 ◽  
Vol 101 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Brantlee Spakes Richter ◽  
Kelly Ivors ◽  
Wei Shi ◽  
D. M. Benson

Wood-based mulches are used in avocado production and are being tested on Fraser fir for reduction of Phytophthora root rot, caused by Phytophthora cinnamomi. Research with avocado has suggested a role of microbial cellulase enzymes in pathogen suppression through effects on the cellulosic cell walls of Phytophthora. This work was conducted to determine whether cellulase activity could account for disease suppression in mulch systems. A standard curve was developed to correlate cellulase activity in mulches with concentrations of a cellulase product. Based on this curve, cellulase activity in mulch samples was equivalent to a cellulase enzyme concentration of 25 U ml–1 or greater of product. Sustained exposure of P. cinnamomi to cellulase at 10 to 50 U ml–1 significantly reduced sporangia production, but biomass was only reduced with concentrations over 100 U ml–1. In a lupine bioassay, cellulase was applied to infested soil at 100 or 1,000 U ml–1 with three timings. Cellulase activity diminished by 47% between 1 and 15 days after application. Cellulase applied at 100 U ml–1 2 weeks before planting yielded activity of 20.08 μmol glucose equivalents per gram of soil water (GE g–1 aq) at planting, a level equivalent to mulch samples. Cellulase activity at planting ranged from 3.35 to 48.67 μmol GE g–1 aq, but no treatment significantly affected disease progress. Based on in vitro assays, cellulase activity in mulch was sufficient to impair sporangia production of P. cinnamomi, but not always sufficient to impact vegetative biomass.


2021 ◽  
Vol 7 (5) ◽  
pp. 350
Author(s):  
Taisuke Seike ◽  
Natsue Sakata ◽  
Fumio Matsuda ◽  
Chikara Furusawa

The fission yeast Schizosaccharomyces japonicus, comprising S. japonicus var. japonicus and S. japonicus var. versatilis varieties, has unique characteristics such as striking hyphal growth not seen in other Schizosaccharomyces species; however, information on its diversity and evolution, in particular mating and sporulation, remains limited. Here we compared the growth and mating phenotypes of 17 wild strains of S. japonicus, including eight S. japonicus var. japonicus strains newly isolated from an insect (Drosophila). Unlike existing wild strains isolated from fruits/plants, the strains isolated from Drosophila sporulated at high frequency even under nitrogen-abundant conditions. In addition, one of the strains from Drosophila was stained by iodine vapor, although the type strain of S. japonicus var. japonicus is not stained. Sequence analysis further showed that the nucleotide and amino acid sequences of pheromone-related genes have diversified among the eight strains from Drosophila, suggesting crossing between S. japonicus cells of different genetic backgrounds occurs frequently in this insect. Much of yeast ecology remains unclear, but our findings suggest that insects such as Drosophila might be a good niche for mating and sporulation, and will provide a basis for the understanding of sporulation mechanisms via signal transduction, as well as the ecology and evolution of yeast.


Sign in / Sign up

Export Citation Format

Share Document