Microscopy studies of powdery mildew on summer squash

Author(s):  
John S. Gardner ◽  
W. M. Hess

Powdery mildews are characterized by the appearance of spots or patches of a white to grayish, powdery, mildewy growth on plant tissues, entire leaves or other organs. Ervsiphe cichoracearum, the powdery mildew of cucurbits is among the most serious parasites, and the most common. The conidia are formed similar to the process described for Ervsiphe graminis by Cole and Samson. Theconidial chains mature basipetally from a short, conidiophore mother-cell at the base of the fertile hypha which arises holoblastically from the conidiophore. During early development it probably elongates by polar-tip growth like a vegetative hypha. A septum forms just above the conidiophore apex. Additional septa develop in acropetal succession. However, the conidia of E. cichoracearum are more doliform than condia from E. graminis. The purpose of these investigations was to use scanning electron microscopy (SEM) to demonstrate the nature of hyphal growth and conidial formation of E. cichoracearum on field-grown squash leaves.

Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1010-1010
Author(s):  
J. K. Choi ◽  
B. S. Kim ◽  
I. Y. Choi ◽  
S. E. Cho ◽  
H. D. Shin

Artemisia annua L., known as sweet wormwood or sweet annie, is native to temperate Asia, but is naturalized throughout the world. It produces artemisinin, a potent antimalarial drug that is also effective in treating other parasitic diseases (4). In August 2013, hundreds of plants showing typical symptoms of powdery mildew were found in Seoul (37°36′29.4″ N 127°02′38.3″ E), Korea. Powdery mildew colonies first appeared as thin white patches, which progressed to abundant hyphal growth on both sides of the leaves, stems, and inflorescence. As symptoms continued to develop, the leaves became distorted and turned purplish-gray. Severe infections caused leaf withering and premature senescence. The same symptoms were found on sweet wormwoods in Nonsan (36°09′55.3″ N 127°01′07.1″ E) and Chuncheon (37°52′27.4″ N 127°43′10.0″ E), Korea. Voucher specimens were deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were nipple-shaped or occasionally lobed. Conidiophores were cylindrical, measured 120 to 230 × 10 to 12.5 μm, and produced 2 to 4 immature conidia in chains with a sinuate outline, followed by 2 to 3 cells. Foot-cells of conidiophores were straight, cylindrical, and 54 to 100 μm long. Conidia were hyaline, ellipsoid to barrel-shaped, measured 30 to 40 × 15 to 20 μm (length/width ratio of 1.5 to 2.1), lacked distinct fibrosin bodies, and showed reticulate wrinkling of the outer walls. Germ tubes were produced on the perihilar position of conidia. Primary conidia were apically rounded, basally subtruncate, and generally smaller than the secondary conidia. No chasmothecia were observed. The structures described above were typical of the powdery mildew Euoidium anamorph of the genus Golovinomyces, and the fungus measurements were similar to those of G. artemisiae (Grev.) V.P. Heluta (3). The complete internal transcribed spacer (ITS) region of rDNA from KUS-F27763 was amplified with primers ITS1/ITS4 and sequenced. The resulting sequence of 624 bp was deposited in GenBank (Accession No. KJ136112). The obtained ITS sequence shared >99% similarity with G. artemisiae on A. princeps and A. montana from Japan (AB077659 and AB077649) and A. argyi from China (KF056818). Pathogenicity was confirmed through inoculation by gently dusting conidia onto leaves of five healthy potted plants. Five non-inoculated plants served as controls. Inoculated plants developed symptoms after 5 days, whereas the control plants remained symptomless. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants. Powdery mildews of A. annua caused by G. artemisiae have been reported in Japan, China, the Russian Far East, and Romania (1,2). To our knowledge, this is the first report of powdery mildew caused by G. artemisiae on A. annua in Korea. Since sweet wormwood production was only recently started on a commercial scale in Korea, powdery mildew infections pose a serious threat to the production of this plant, especially in organic farming where chemical control options are limited. References: (1) K. Amano. Host Range and Geographical Distribution of the Powdery Mildew Fungi. Japan Scientific Societies Press, Tokyo, 1986. (2) U. Braun. The Powdery Mildews (Erysiphales) of Europe. G. Fischer Verlag, Jena, 1995. (3) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (4) P. J. Weathers et al. Phytochem. Rev. 10:173, 2011.


2019 ◽  
pp. 05-09

The presence study deals with powdery mildews in various cucurbits in Katsina city (Barhim Estate, Kofar Durbi, Kofar Sauri, Kofar Marusa and Low Cost), Nigeria. The finding shows that the areas infested with powdery mildew is one of the important disease of cucurbits. The Sphaerotheca fuliginea was identified to be the causal organism present on all observed cucurbits in the study. Highest frequency of disease was found in Kofar Sauri(79%) fallowed by Kofar Marusa (68%), Kofar Durbi (66%), Barhim Estate (65%) and the lowest frequency of occurrence of disease was found in Low Cost (55%).The intensity of the disease was moderate to severe in general but it was high in many fields, the area-wise variation was also noticed. On vegetables, the highest frequency of occurrence of powdery mildew disease was observed on L. cylindrica (76.4%) followed by C. moschata (60%), C. sativus (59.3%), C. vulgaris (53.9%) and lowest was found on C. melo (44.4%). The highest intensity of disease was found on C. moschata, followed by L. cylindrica, C. sativus, C. vulgaris and C. melo.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1086-1093 ◽  
Author(s):  
Marie-Laure Desprez-Loustau ◽  
Marie Massot ◽  
Nicolas Feau ◽  
Tania Fort ◽  
Antonio de Vicente ◽  
...  

Mango leaves and inflorescences infected by powdery mildew in southern Spain were analyzed using multigene sequencing (ITS + 4 single-copy coding genes) to identify the causal agent. Erysiphe quercicola was detected in 97% out of 140 samples, collected in six different orchards in the Malaga region. Among these, a small proportion also yielded E. alphitoides (8% of all samples) and E. alphitoides was found alone in 3% of samples. A phylogenetic approach was completed by cross inoculations between oak and mango, which led to typical symptoms, supporting the conspecificity of oak and mango powdery mildews. To our knowledge, this is the first report of E. quercicola and E. alphitoides causing powdery mildew on mango trees in mainland Spain, and thus mainland Europe, based on unequivocal phylogenetic and biological evidence. Our study thus confirmed the broad host range of both E. quercicola and E. alphitoides. These results have practical implications in terms of the demonstrated ability for host range expansion in powdery mildews. They also open interesting prospects to the elucidation of molecular mechanisms underlying the ability to infect single versus multiple and unrelated host plants since these two closely related powdery mildew species belong to a small clade with both generalist and specialist powdery mildews.


2021 ◽  
Author(s):  
Patricia Scholz ◽  
Přemysl Pejchar ◽  
Max Fernkorn ◽  
Eliška Škrabálková ◽  
Roman Pleskot ◽  
...  

Plant Disease ◽  
2009 ◽  
Vol 93 (2) ◽  
pp. 130-134 ◽  
Author(s):  
Yonghao Li ◽  
Mark T. Windham ◽  
Robert N. Trigiano ◽  
Sandra M. Reed ◽  
James M. Spiers ◽  
...  

Temporal development of Erysiphe polygoni and responses of bigleaf hydrangeas (Hydrangea macrophylla) to the fungal attack were investigated using bright-field and fluorescence microscopy. Conidia germinated 2 h after inoculation (HAI) and formed primary appressoria at the tip of the primary germ tubes within 4 HAI. Secondary germ tubes were initiated from primary appressoria or other parts of conidia 12 HAI. Hyphae developed through elongation of secondary germ tubes, and paired lateral appressoria were formed along hyphae within 2 days after inoculation (DAI). Conidiophores and conidia were formed 5 DAI. In the susceptible cultivar Nikko Blue and the resistant cultivar Veitchii, the fungus established a parasitic relationship, which was indicated by the formation of haustoria under primary appressoria and development of secondary germ tubes at 1 DAI. A hypersensitive response (HR) and accumulation of callose were detected in both resistant and susceptible cultivars at 3 DAI. Resistance to powdery mildew in Veitchii was evident by manifestation of early accumulation of callose, relatively high percentage of necrotic infected cells, and restricted colony development compared to the susceptible cultivar Nikko Blue. Restricting hyphal growth and sporulation by early response of callose accumulation and HR are important resistance mechanisms that could be used in screening hydrangeas for resistance to powdery mildew.


2012 ◽  
Vol 102 (1) ◽  
pp. 83-93 ◽  
Author(s):  
David W. Ramming ◽  
Franka Gabler ◽  
Joseph L. Smilanick ◽  
Dennis A. Margosan ◽  
Molly Cadle-Davidson ◽  
...  

Race-specific resistance against powdery mildews is well documented in small grains but, in other crops such as grapevine, controlled analysis of host–pathogen interactions on resistant plants is uncommon. In the current study, we attempted to confirm powdery mildew resistance phenotypes through vineyard, greenhouse, and in vitro inoculations for test cross-mapping populations for two resistance sources: (i) a complex hybrid breeding line, ‘Bloodworth 81-107-11', of at least Vitis rotundifolia, V. vinifera, V. berlandieri, V. rupestris, V. labrusca, and V. aestivalis background; and (ii) Vitis hybrid ‘Tamiami’ of V. aestivalis and V. vinifera origin. Statistical analysis of vineyard resistance data suggested the segregation of two and three race-specific resistance genes from the two sources, respectively. However, in each population, some resistant progeny were susceptible in greenhouse or in vitro screens, which suggested the presence of Erysiphe necator isolates virulent on progeny segregating for one or more resistance genes. Controlled inoculation of resistant and susceptible progeny with a diverse set of E. necator isolates clearly demonstrated the presence of fungal races differentially interacting with race-specific resistance genes, providing proof of race specificity in the grape powdery mildew pathosystem. Consistent with known race-specific resistance mechanisms, both resistance sources were characterized by programmed cell death of host epidermal cells under appressoria, which arrested or slowed hyphal growth; this response was also accompanied by collapse of conidia, germ tubes, appressoria, and secondary hyphae. The observation of prevalent isolates virulent on progeny with multiple race-specific resistance genes before resistance gene deployment has implications for grape breeding strategies. We suggest that grape breeders should characterize the mechanisms of resistance and pyramid multiple resistance genes with different mechanisms for improved durability.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata Sieb. and Zucc. (columbine) is a perennial garden species belonging to the family Ranunculaceae. During the summer of 2003, a severe outbreak of a previously unknown powdery mildew was observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia were hyaline, ellipsoid, and measured 31.2 to 47.5 × 14.4 to 33 μm (average 38.6 × 21.6 μm). Fibrosin bodies were not present. Cleistothecia were globose, brown, had simple appendages, ranged from 82 to 127 (average 105) μm in diameter, and contained one to two asci. Ascocarp appendages measured five to eight times the ascocarp diameter. Asci were cylindrical (ovoidal) and measured 45.3 to 58.2 × 30.4 to 40.2 μm. Ascospores (three to four per ascus) were ellipsoid or cylindrical and measured 28.3 to 31.0 × 14.0 to 15.0 μ;m. On the basis of its morphology, the pathogen was identified as Erysiphe aquilegiae var. aquilegiae (1). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five, healthy A. flabellata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a garden where temperatures ranged between 20 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on Aquilegia flabellata in Italy. E. communis (Wallr.) Link and E. polygoni DC. were reported on several species of Aquilegia in the United States (2), while E. aquilegiae var. aquilegiae was previously observed on A. flabellata in Japan and the former Union of Soviet Socialist Republics (3). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Nova Hedwigia, 89:700, 1987. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) K. Hirata. Host Range and Geographical Distribution of the Powdery Mildews. Faculty of Agriculture, Niigata University, 1966.


2018 ◽  
Vol 19 (3) ◽  
pp. 220-221 ◽  
Author(s):  
Anthony P. Keinath ◽  
Gabriel Rennberger ◽  
Chandrasekar S. Kousik

Resistance to boscalid, one of the older succinate-dehydrogenase inhibitors (SHDI) in Fungicide Resistance Action Committee (FRAC) code 7, was detected in Podosphaera xanthii, the cucurbit powdery mildew fungus, in South Carolina in July 2017. Resistance to the field rate (682 ppm) of boscalid was confirmed in greenhouse experiments and laboratory bioassays conducted on summer squash plants and cotyledons, respectively, that had been treated with a range of boscalid concentrations. This report is the first documentation of resistance to boscalid in P. xanthii in the southern United States.


PROTOPLASMA ◽  
2009 ◽  
Vol 240 (1-4) ◽  
pp. 13-31 ◽  
Author(s):  
Till Ischebeck ◽  
Stephan Seiler ◽  
Ingo Heilmann
Keyword(s):  

2011 ◽  
Vol 101 (7) ◽  
pp. 839-846 ◽  
Author(s):  
Laura Wakefield ◽  
David M. Gadoury ◽  
Robert C. Seem ◽  
Michael G. Milgroom ◽  
Qi Sun ◽  
...  

Asexual sporulation (conidiation) is coordinately regulated in the grape powdery mildew pathogen Erysiphe necator but nothing is known about its genetic regulation. We hypothesized that genes required for conidiation in other fungi would be upregulated at conidiophore initiation or full conidiation (relative to preconidiation vegetative growth and development of mature ascocarps), and that the obligate biotrophic lifestyle of E. necator would necessitate some novel gene regulation. cDNA amplified fragment length polymorphism analysis with 45 selective primer combinations produced ≈1,600 transcript-derived fragments (TDFs), of which 620 (39%) showed differential expression. TDF sequences were annotated using BLAST analysis of GenBank and of a reference transcriptome for E. necator developed by 454-FLX pyrosequencing of a normalized cDNA library. One-fourth of the differentially expressed, annotated sequences had similarity to fungal genes of unknown function. The remaining genes had annotated function in metabolism, signaling, transcription, transport, and protein fate. As expected, a portion of orthologs known in other fungi to be involved in developmental regulation was upregulated immediately prior to or during conidiation; particularly noteworthy were several genes associated with the light-dependent VeA regulatory system, G-protein signaling (Pth11 and a kelch repeat), and nuclear transport (importin-β and Ran). This work represents the first investigation into differential gene expression during morphogenesis in E. necator and identifies candidate genes and hypotheses for characterization in powdery mildews. Our results indicate that, although control of conidiation in powdery mildews may share some basic elements with established systems, there are significant points of divergence as well, perhaps due, in part, to the obligate biotrophic lifestyle of powdery mildews.


Sign in / Sign up

Export Citation Format

Share Document