Visualizing three-dimensional fungal growth using light sheet fluorescence microscopy

2021 ◽  
pp. 103549
Author(s):  
Braulio Gutiérrez–Medina ◽  
Alexis Vázquez-Villa
2014 ◽  
Vol 6 (10) ◽  
pp. 988-998 ◽  
Author(s):  
Francesco Pampaloni ◽  
Ulrich Berge ◽  
Anastasios Marmaras ◽  
Peter Horvath ◽  
Ruth Kroschewski ◽  
...  

This novel system for the long-term fluorescence imaging of live three-dimensional cultures provides minimal photodamage, control of temperature, CO2, pH, and media flow.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hosein Kafian ◽  
Meelad Lalenejad ◽  
Sahar Moradi-Mehr ◽  
Shiva Akbari Birgani ◽  
Daryoush Abdollahpour

Abstract Light-sheet fluorescence microscopy (LSFM) has now become a unique tool in different fields ranging from three-dimensional (3D) tissue imaging to real-time functional imaging of neuronal activities. Nevertheless, obtaining high-quality artifact-free images from large, dense and inhomogeneous samples is the main challenge of the method that still needs to be adequately addressed. Here, we demonstrate significant enhancement of LSFM image qualities by using scanning non-diffracting illuminating beams, both through experimental and numerical investigations. The effect of static and scanning illumination with several beams are analyzed and compared, and it is shown that scanning 2D Airy light-sheet is minimally affected by the inhomogeneities in the samples, and provides higher contrasts and uniform resolution over a wide field-of-view, due to its reduced spatial coherence, self-healing feature and longer penetration depth. Further, the capabilities of the illumination scheme is utilized for both single-and double-wavelength 3D imaging of large and dense mammospheres of cancer tumor cells as complex inhomogeneous biological samples.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Erick Vargas Ordaz ◽  
Sergey Gorelick ◽  
Harrison York ◽  
Bonan Liu ◽  
Michelle L. Halls ◽  
...  

Volumetric, sub-micron to micron level resolution imaging is necessary to assay phenotypes or characteristics at the sub-cellular/organelle scale. However, three-dimensional fluorescence imaging of cells is typically low throughput or compromises...


2015 ◽  
Vol 107 (26) ◽  
pp. 263701 ◽  
Author(s):  
C. K. Rasmi ◽  
Kavya Mohan ◽  
M. Madhangi ◽  
K. Rajan ◽  
U. Nongthomba ◽  
...  

2019 ◽  
Author(s):  
Hosein Kafian ◽  
Meelad Lalenejad ◽  
Sahar Moradi-Mehr ◽  
Shiva Akbari Birgani ◽  
Daryoush Abdollahpour

AbstractLight-sheet fluorescence microscopy (LSFM) has now become a unique technique in different fields ranging from three-dimensional (3D) tissue imaging to real-time functional imaging of neuronal activities. Nevertheless, obtaining high-quality artifact-free images from large, dense and inhomogeneous samples is the main challenge of the method that still needs to be adequately addressed. Here, we demonstrate significant enhancement of LSFM image qualities by using scanning non-diffracting illuminating beams, both through experimental and numerical investigations. The effect of static and scanning illumination with several beams are analyzed and compared, and it is shown that scanning 2D Airy light sheet is minimally affected by the artifacts, and provide higher contrasts and uniform resolution over a wide field-of-view, due to its reduced spatial coherence, self-healing feature and higher penetration depth. Further, the capabilities of the illumination scheme is utilized for both single and double wavelength 3D imaging of a large and dense mammospheres of cancer tumor cells as complex inhomogeneous biological samples.


2019 ◽  
Author(s):  
Jorge Amich ◽  
Zeinab Mokhtari ◽  
Marlene Strobel ◽  
Elena Vialetto ◽  
Natarajaswamy Kalleda ◽  
...  

ABSTRACTAspergillus fumigatusis an opportunistic fungal pathogen that can cause life-threatening invasive lung infections in immunodeficient patients. The cellular and molecular processes of infection during onset, establishment and progression are highly complex and depend on both fungal attributes and the immune status of the host. Therefore, preclinical animal models are paramount to investigate and gain better insight into the infection process. Yet, despite their extensive use, commonly employed murine models of invasive pulmonary aspergillosis are not well understood due to analytical limitations. Here we present quantitative light sheet fluorescence microscopy (LSFM) to describe fungal growth and the local immune response in whole lungs at cellular resolution within its anatomical context. We analyzed three very common murine models of pulmonary aspergillosis based on immunosuppression with corticosteroids, chemotherapy-induced leukopenia or myeloablative irradiation. LSFM uncovered distinct architectures of fungal growth and degrees of tissue invasion in each model. Furthermore, LSFM revealed the spatial distribution, interaction and activation of two key immune cell populations in antifungal defense: alveolar macrophages and polymorphonuclear neutrophils. Interestingly, the patterns of fungal growth correlated with the detected effects of the immunosuppressive regimens on the local immune cell populations. Moreover, LSFM demonstrates that the commonly used intranasal route of spore administration did not result in the desired intra-alveolar deposition, as more than 60% of fungal growth occurred outside of the alveolar space. Hence, LSFM allows for more rigorous characterization of murine models of invasive pulmonary aspergillosis and pinpointing their strengths and limitations.IMPORTANCEThe use of animal models of infection is essential to advance our understanding of complex host-pathogen interactions that take place duringAspergillus fumigatuslung infections. As in the case of humans, mice need to be immunosuppressed to become susceptible to invasive pulmonary aspergillosis, the most serious infection caused byA. fumigatus. There are several immunosuppressive regimens that are routinely used to investigate fungal growth and/or immune responses in murine models of invasive pulmonary aspergillosis (IPA). However, the precise consequences that each immunosuppressive model has on the local immune populations and for fungal growth are not completely understood. Here we employed light sheet fluorescence microscopy (LSFM) to analyze whole lungs at cellular resolution, to pin down the scenario commonly used IPA models. Our results will be valuable to optimize and refine animal models to maximize their use in future research.VISUAL ABSTRACTQuantitative light sheet fluorescence microscopy to dissect local host-pathogen interactions in the lung afterA. fumigatusairway infection.


2017 ◽  
Author(s):  
Raghuveer Parthasarathy

Microbes often live in dense, dynamic, multi-species communities whose architecture and function are intimately intertwined. Imaging these complex, three-dimensional ensembles presents considerable technical challenges, however. In this review, I describe light sheet fluorescence microscopy, a technique that enables rapid acquisition of three-dimensional images over large fields of view and over long durations, and I highlight recent applications of this method to microbial systems that include artificial closed ecosystems, bacterial biofilms, and gut microbiota. I comment also on the history of light sheet imaging and the many variants of the method. Light sheet techniques have tremendous potential for illuminating the workings of microbial communities, a potential that is just beginning to be realized.


2017 ◽  
Author(s):  
Raghuveer Parthasarathy

Microbes often live in dense, dynamic, multi-species communities whose architecture and function are intimately intertwined. Imaging these complex, three-dimensional ensembles presents considerable technical challenges, however. In this review, I describe light sheet fluorescence microscopy, a technique that enables rapid acquisition of three-dimensional images over large fields of view and over long durations, and I highlight recent applications of this method to microbial systems that include artificial closed ecosystems, bacterial biofilms, and gut microbiota. I comment also on the history of light sheet imaging and the many variants of the method. Light sheet techniques have tremendous potential for illuminating the workings of microbial communities, a potential that is just beginning to be realized.


2017 ◽  
Author(s):  
Raghuveer Parthasarathy

Microbes often live in dense, dynamic, multi-species communities whose architecture and function are intimately intertwined. Imaging these complex, three-dimensional ensembles presents considerable technical challenges, however. In this review, I describe light sheet fluorescence microscopy, a technique that enables rapid acquisition of three-dimensional images over large fields of view and over long durations, and I highlight recent applications of this method to microbial systems that include artificial closed ecosystems, bacterial biofilms, and gut microbiota. I comment also on the history of light sheet imaging and the many variants of the method. Light sheet techniques have tremendous potential for illuminating the workings of microbial communities, a potential that is just beginning to be realized.


Sign in / Sign up

Export Citation Format

Share Document