Experimental study on the effect of mechanical ventilation conditions and fire dynamics on the pressure evolution in an air-tight compartment

2021 ◽  
pp. 103426
Author(s):  
Junyi Li ◽  
Hugues Prétrel ◽  
Sylvain Suard ◽  
Tarek Beji ◽  
Bart Merci
Author(s):  
Peter Vidmar ◽  
Stojan Petelin

The definition of the deterministic approach in safety analyses arises from the need to understand the conditions that emerge during a fire accident in a road tunnel. The key factor of the tunnel operations during the fire is the ventilation, which during the initial phases of the fire have a strong impact on the evacuation of people and later on the access of the intervention units in the tunnel. The paper presents the use of the CFD model in the tunnel safety assessment process. The set-up of the initial and boundary conditions and the requirement for grid density found from validation tests of an FDS (Fire Dynamics Simulator) is used to prepare three kinds of fire scenarios, 20MW, 50MW and 100MW, with different ventilation conditions; natural, semi transverse, transverse and longitudinal ventilation. The observed variables, soot density and temperature, are presented in minutes time steps through the entire tunnel length. Comparing the obtained data in a table allows the analyses of the ventilation conditions for different heat releases from fires. The second step is to add additional criteria of human behaviour inside the tunnel (evacuation) and human resistance to the elevated gas concentrations and temperature. What comes out is a fully deterministic risk matrix that is based on the calculated data where the risk is ranged on five levels, from the lowest to a very dangerous level. The deterministic risk matrix represents the alternative to a probabilistic safety assessment methodology, wherein the fire risk is represented in detail and the CFD (Computational Fluid Dynamics) model results are physically correct.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Xianming Zhang ◽  
Juan Du ◽  
Weiliang Wu ◽  
Yongcheng Zhu ◽  
Ying Jiang ◽  
...  

2014 ◽  
Vol 936 ◽  
pp. 2130-2134
Author(s):  
Yi Hu Cui ◽  
Jun Cheng Jiang ◽  
Yuan Yu ◽  
Qing Wu Zhang

An experimental study on pressure evolution during closed explosion and venting progress of methane–air mixtures ([CH4=10%]) in linked vessels was performed, for systems at various initial pressures (P0=0-0.08MPa). The effects of initial pressure on regularity of pressure variation in vessels were discussed. For the closed explosion in isolated vessel, the higher level of the initial pressure in isolated big vessel is, the larger the peak pressure and rate of pressure rise is, and the peak pressure increases nonlinearly with initial pressure; For closed explosion in linked vessels, the higher initial pressure within the linked vessels system leads to the higher peak pressures in two vessels and there is an approximate linear relationship between them, which is similar to explosion in isolated vessel. For vented explosion in linked vessels at higher initial pressure, venting has poorer effect on protection of the linked vessels.


Sign in / Sign up

Export Citation Format

Share Document