Determination of friction factor of Algerian crude oil during flow in pipe-lines

2013 ◽  
Vol 33 ◽  
pp. 28-35 ◽  
Author(s):  
Madjid Meriem-Benziane ◽  
Benyebka Bou-Saïd
Keyword(s):  
2020 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
E. S. Dremicheva

This paper presents a method of sorption using peat for elimination of emergency spills of crude oil and petroleum products and the possibility of energy use of oil-saturated peat. The results of assessment of the sorbent capacity of peat are presented, with waste motor oil and diesel fuel chosen as petroleum products. Natural peat has been found to possess sorption properties in relation to petroleum products. The sorbent capacity of peat can be observed from the first minutes of contact with motor oil and diesel fuel, and significantly depends on their viscosity. For the evaluation of thermal properties of peat saturated with petroleum products, experimental studies have been conducted on determination of moisture and ash content of as-fired fuel. It is shown that adsorbed oil increases the moisture and ash content of peat in comparison with the initial sample. Therefore, when intended for energy use, peat saturated with petroleum products is to be subjected to additional drying. Simulation of net calorific value has been performed based on the calorific values of peat and petroleum products with different ratios of petroleum product content in peat and for a saturated peat sample. The obtained results are compared with those of experiments conducted in a calorimetric bomb and recalculated for net calorific value. A satisfactory discrepancy is obtained, which amounts to about 12%. Options have been considered providing for combustion of saturated peat as fuel (burnt per se and combined with a solid fuel) and processing it to produce liquid, gaseous and solid fuels. Peat can be used to solve environmental problems of elimination of emergency spills of crude oil and petroleum products and as an additional resource in solving the problem of finding affordable energy.


Chemosphere ◽  
2021 ◽  
pp. 131563
Author(s):  
Laurens van Gelderen ◽  
Kristoffer Gulmark Poulsen ◽  
Jan H. Christensen ◽  
Grunde Jomaas

Author(s):  
Kajum Safiullin ◽  
Vyacheslav Kuzmin ◽  
Alexander Bogaychuk ◽  
Egor Alakshin ◽  
Lisset Miquel González ◽  
...  
Keyword(s):  

2013 ◽  
Vol 86 ◽  
pp. 102-107 ◽  
Author(s):  
Adriana Doyle ◽  
Alvaro Saavedra ◽  
Maria Luiza B. Tristão ◽  
Luiz A.N. Mendes ◽  
Ricardo Q. Aucélio

1988 ◽  
Vol 110 (4) ◽  
pp. 431-440 ◽  
Author(s):  
N. T. Obot

It has been demonstrated conclusively that the widely observed differences in data for frictional pressure coefficient between circular and noncircular passages derive from the inseparably connected effects of transition and the choice of a length scale. A relatively simple approach, the critical friction method (CFM), has been developed and when applied to triangular, rectangular, and concentric annular passages, the reduced data lie with remarkable consistency on the circular tube relations. In accordance with the theory of dynamical similarity, it has also been shown that noncircular duct data can be reduced using the hydraulic diameter or any arbitrarily defined length scale. The proposed method is what is needed to reconcile such data with those for circular tubes. With the hydraulic diameter, the critical friction factor almost converges to a universal value for all passages and the correction is simply that required to account for the difference in critical Reynolds number. By contrast, with any other linear parameter, two corrections are needed to compensate for variations in critical friction factor and Reynolds number. Application of the method to roughened passages is discussed.


2019 ◽  
Vol 8 (05) ◽  
pp. 19-24
Author(s):  
Echem, Ogbonda G ◽  
Kalagbor, Ihesinachi A ◽  
Lucky, G.B
Keyword(s):  

1982 ◽  
Vol 22 (04) ◽  
pp. 558-562 ◽  
Author(s):  
P.C. Rawat ◽  
S.L. Agarwal

Abstract An important parameter required for computing heat loss through buried submarine pipelines transporting crude oil is the thermal conductivity of soils. This paper describes an apparatus designed for determination of the thermal conductivity of soils at the desired moisture/ density condition in the laboratory under steady-state conditions. Experimental results on the three soils studied show that thermal conductivity increases as dry density increases at a constant moisture content and that it increases as water content increases at constant dry density. These results confirm the trends isolated earlier by Kersten. The experimental results are compared with the available empirical relationships. Kersten's relation is observed to predict the thermal conductivity of these soils reasonably. The predictions from Makowski and Mochlinski's relation (quoted by Szilas) are not good but improve if the sum of silt and clay fractions is treated as a clay fraction in the computation. Introduction Submarine pipelines are used extensively for transporting crude oil from offshore to other pipelines offshore or onshore. These pipelines usually are steel pipes covered with a coating of concrete. They often are buried some depth below the mudline. The rheological properties of different crude oils vary, and their viscosities increase with a decrease in temperature. Below some temperature, the liquid oil tends to gel. Therefore, for efficient transportation, the crude must be at a relatively high temperature so that it has a low viscosity. The temperature of the soil/water system surrounding a submarine pipeline is usually lower than that of oil. This temperature difference induces heat to flow from the oil to the environment, and the temperature of the oil decreases as it travels along the length of the pipeline. One must ensure that this temperature reduction does not exceed desirable limits dictated by the rheological properties of oil and by the imperatives of efficient economic properties of oil and by the imperatives of efficient economic transportation. Thus the analytical problem is to predict the temperature of crude in the pipeline some distance away from the input station. To do so, knowledge of the overall heat transfer coefficient for the pipeline is required, for which, in turn, it is necessary to know the thermal conductivities of the oil, the pipeline materials and its coating, and the soil. This paper presents thermal conductivities of soils determined in the laboratory under steady-state conditions and also presents a comparison of the test results of three soils with values determined from existing empirical relationships. Literature Review Heat moves spontaneously from higher to lower temperatures. In a completely dry porous body, transmission of heat can take place not only by conduction through the solid framework of the body and the air in the pores but also by convection and radiation between the walls of a pore and by macro- and microdistillation. In soils, however, it can be ascribed essentially to conduction, a molecular phenomenon that can be expressed in terms of experimentally determined coefficients of conductivity or resistivity, although these actually may include microdistillation and other mechanisms. SPEJ p. 558


1997 ◽  
Vol 15 (3-4) ◽  
pp. 273-282
Author(s):  
Marco Antonio G. Teixeira ◽  
Artur L. Scofield ◽  
Marcos Vinicius R. Cabral

Sign in / Sign up

Export Citation Format

Share Document