Individual-tree diameter growth models for black spruce and jack pine plantations in northern Ontario

2011 ◽  
Vol 261 (11) ◽  
pp. 2140-2148 ◽  
Author(s):  
Nirmal Subedi ◽  
Mahadev Sharma
Forests ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. 506 ◽  
Author(s):  
Paulo Moreno ◽  
Sebastian Palmas ◽  
Francisco Escobedo ◽  
Wendell Cropper ◽  
Salvador Gezan

2004 ◽  
Vol 80 (3) ◽  
pp. 366-374 ◽  
Author(s):  
Lianjun Zhang ◽  
Changhui Peng ◽  
Qinglai Dang

Individual-tree models of five-year basal area growth were developed for jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana (Mill.) BSP) in northern Ontario. Tree growth data were collected from long-term permanent plots of pure and mixed stands of the two species. The models were fitted using mixed model methods due to correlated remeasurements of tree growth over time. Since the data covered a wide range of stand ages, stand conditions and tree sizes, serious heterogeneous variances existed in the data. Therefore, the coefficients of the final models were obtained using weighted regression techniques. The models for the two species were evaluated across 4-cm diameter classes using independent data. The results indicated (1) the models of jack pine and black spruce produced similar prediction errors and biases for intermediate-sized trees (12–28 cm in tree diameter), (2) both models yielded relatively large errors and biases for larger trees (> 28 cm) than those for smaller trees, and (3) the jack pine model produced much larger errors and biases for small-sized trees (< 12 cm) than did the black spruce model. Key words: mixed models, repeated measures, model validation


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 187 ◽  
Author(s):  
Qiangxin Ou ◽  
Xiangdong Lei ◽  
Chenchen Shen

Individual tree growth models are flexible and commonly used to represent growth dynamics for heterogeneous and structurally complex uneven-aged stands. Besides traditional statistical models, the rapid development of nonparametric and nonlinear machine learning methods, such as random forest (RF), boosted regression tree (BRT), cubist (Cubist) and multivariate adaptive regression splines (MARS), provides a new way for predicting individual tree growth. However, the application of these approaches to individual tree growth modelling is still limited and short of a comparison of their performance. The objectives of this study were to compare and evaluate the performance of the RF, BRT, Cubist and MARS models for modelling the individual tree diameter growth based on tree size, competition, site condition and climate factors for larch–spruce–fir mixed forests in northeast China. Totally, 16,619 observations from long-term sample plots were used. Based on tenfold cross-validation, we found that the RF, BRT and Cubist models had a distinct advantage over the MARS model in predicting individual tree diameter growth. The Cubist model ranked the highest in terms of model performance (RMSEcv [0.1351 cm], MAEcv [0.0972 cm] and R2cv [0.5734]), followed by BRT and RF models, whereas the MARS ranked the lowest (RMSEcv [0.1462 cm], MAEcv [0.1086 cm] and R2cv [0.4993]). Relative importance of predictors determined from the RF and BRT models demonstrated that the competition and tree size were the main drivers to diameter growth, and climate had limited capacity in explaining the variation in tree diameter growth at local scale. In general, the RF, BRT and Cubist models are effective and powerful modelling methods for predicting the individual tree diameter growth.


2017 ◽  
Vol 63 (No. 5) ◽  
pp. 227-238 ◽  
Author(s):  
Sharma Ram P ◽  
Vacek Zdeněk ◽  
Vacek Stanislav ◽  
Jansa Václav ◽  
Kučera Miloš

Individual tree-based growth models precisely describe the growth of individual trees irrespective of stand complexity. These models are more useful than the stand-based growth models for effective management of forests. We developed an individual tree diameter growth model for Norway spruce (Picea abies /Linnaeus/ H. Karsten) using permanent research plot data collected from Krkonoše National Park in the Czech Republic. The model was tested against a part of the Czech National Forest Inventory (NFI) data that originated from the western region of the country. Among various models derived by a generalized algebraic difference approach (GADA), the GADA model derived from the Chapman-Richards function best suited to our data. Tree-specific parameters unique to each growth series, which describe tree-specific growth conditions, were estimated simultaneously with global parameters common to all growth series using the iterative nested regressions. The model described most of the variations in diameter growth for model calibration data (R<sup>2</sup><sub>adj</sub> = 0.9901, RMSE = 0.5962), leaving no significant trends in the residuals. A test against NFI data also confirms that the model is precise enough for predictions of diameter growth for ranges of site quality, tree size, age, and growth condition. The model also possesses biologically desirable properties because it produces the curves with growth rates and asymptotes that increase with increasing site quality. The GADA model is path-invariant and therefore applicable for both forward and backward predictions, meaning that the model can precisely predict diameter growth at any past ages of the trees.


1988 ◽  
Vol 64 (4) ◽  
pp. 345-351 ◽  
Author(s):  
R. D. Whitney

Armillaria root rot. caused most likely by Armillaria obscura (Pers) Herink, killed 6-to 21-year-old white spruce, black spruce, jack pine and red pine saplings in each of 49 plantations examined in northern Ontario. Annual mortality in the four species over the last 2 to 6 years averaged 1.4%, 1.5%, 0.5% and 0.2%, respectively. In all but one of 25 white spruce and red pine plantations (43 to 58 years old) in eastern and southern Ontario. Armillaria root rot was associated with mortality. Accumulated mortality in white spruce and red pine (initially recorded in 1978) averaged 7.6% and 11.7%, respectively, as of 1986. Current annual mortality for all plantations ranged from 0% to 16%. Key words: root rot. Armillaria obscura, white spruce, black spruce, jack pine, red pine.


2008 ◽  
Vol 54 (1) ◽  
pp. 31-35
Author(s):  
Thomas G. Matney ◽  
Emily B. Schultz

Abstract Many growth and yield models have used statistical probability distributions to estimate the diameter distribution of a stand at any age. Equations for approximating individual tree diameter growth and survival probabilities from dbh can be derived from these models. A general procedure for determining the functions is discussed and illustrated using a loblolly pine spacing study. The results from the spacing study show that it is possible to define tree diameter growth and survival probability functions from diameter distributions with an accuracy sufficient to obtain a link between the individual tree and diameter growth and yield models.


Sign in / Sign up

Export Citation Format

Share Document