Long-term effects of fuel treatments on aboveground biomass accumulation in ponderosa pine forests of the northern Rocky Mountains

2017 ◽  
Vol 400 ◽  
pp. 587-599 ◽  
Author(s):  
Kate A. Clyatt ◽  
Christopher R. Keyes ◽  
Sharon M. Hood
2010 ◽  
Vol 25 (3) ◽  
pp. 112-119 ◽  
Author(s):  
Daniel Tinker ◽  
Gail K. Stakes ◽  
Richard M. Arcano

Abstract Temperate forest ecosystems continue to play an important role in the global carbon cycle, and the ability to accurately quantify carbon storage and allocation remains a critical tool for managers and researchers. This study was aimed at developing new allometric equations for predicting above- and belowground biomass of both mature trees and saplings of ponderosa pine trees in the Black Hills region of the western United States and at evaluating thinning effects on biomass pools and aboveground productivity. Study sites included three stands that had been commercially thinned and one unmanaged stand. Nine allometric equations were developed for mature trees, and six equations were developed for saplings; all models exhibited strong predictive power. The unmanaged stand contained more than twice as much total aboveground biomass as any of the thinned stands. Aboveground biomass allocation among tree compartments was similar among the three older stands but quite different from the young, even-aged stand. Stand-level aboveground net primary production was higher in the unmanaged and intensively managed stands, yet tree-level annual productivity was much lower in the unmanaged stands than in any of the managed forests, suggesting that thinning of some forest stands may increase their ability to sequester and store carbon. Our data also suggest that different management approaches did not have the same effect on carbon allocation as they did on total carbon storage capacity, but rather, stand age was the most important factor in predicting carbon allocation within individual trees and stands. Identification of the relationships between stand structure and forest management practices may help identify various management strategies that maximize rates of carbon storage in ponderosa pine forests.


2020 ◽  
Vol 66 (6) ◽  
pp. 761-769
Author(s):  
Matt Busse ◽  
Ross Gerrard

Abstract We measured forest-floor accumulation in ponderosa pine forests of central Oregon and asked whether selected ecological functions of the organic layer were altered by thinning and repeated burning. Experimental treatments included three thinning methods applied in 1989 (stem only, whole tree, no thin—control) in factorial combination with prescribed burning (spring 1991 and repeated in 2002; no burn—control). Forest-floor depth and mass were measured every 4–6 years from 1991 to 2015. Without fire, there was little temporal change in depth or mass for thinned (270 trees ha−1) and control (560–615 trees ha−1) treatments, indicating balanced litterfall and decay rates across these stand densities. Each burn consumed 50–70 percent of the forest floor, yet unlike thinning, postfire accumulation rates were fairly rapid, with forest-floor depth matching preburn levels within 15–20 years. Few differences in forest-floor function (litter decay, carbon storage, physical barrier restricting plant emergence, erosion protection) resulted from thinning or burning after 25 years. An exception was the loss of approximately 300 kg N ha−1 because of repeated burning, or approximately 13 percent of the total site N. This study documents long-term forest-floor development and suggests that common silvicultural practices pose few risks to organic layer functions in these forests. Study Implications: Mechanical thinning and prescribed fire are among the most widespread management practices used to restore forests in the western US to healthy, firewise conditions. We evaluated their effects on the long-term development of litter and duff layers, which serve dual roles as essential components of soil health and as fuel for potential wildfire. Our study showed that thinning and burning provided effective fuel reduction and resulted in no adverse effects to soil quality in dry ponderosa pine forests of central Oregon. Repeated burning reduced the site carbon and nitrogen pools approximately 9–13 percent, which is small compared to C located in tree biomass and N in mineral soil. Litter accumulation after burning was rapid, and we recommend burning on at least a 15–20-year cycle to limit its build-up.


2002 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
Jolie Pollet ◽  
Philip N. Omi

Fire exclusion policies have affected stand structure and wildfire hazard in north American ponderosa pine forests. Wildfires are becoming more severe in stands where trees are densely stocked with shade-tolerant understory trees. Although forest managers have been employing fuel treatment techniques to reduce wildfire hazard for decades, little scientific evidence documents the success of treatments in reducing fire severity. Our research quantitatively examined fire effects in treated and untreated stands in western United States national forests. Four ponderosa pine sites in Montana, Washington, California and Arizona were selected for study. Fuel treatments studied include: prescribed fire only, whole-tree thinning, and thinning followed by prescribed fire. On-the-ground fire effects were measured in adjacent treated and untreated forests. We developed post facto fire severity and stand structure measurement techniques to complete field data collection. We found that crown fire severity was mitigated in stands that had some type of fuel treatment compared to stands without any treatment. At all four of the sites, the fire severity and crown scorch were significantly lower at the treated sites. Results from this research indicate that fuel treatments, which remove small diameter trees, may be beneficial for reducing crown fire hazard in ponderosa pine sites.


2020 ◽  
Vol 66 (No. 10) ◽  
pp. 393-406
Author(s):  
Jianwei Zhang ◽  
William Oliver ◽  
Russ Graham ◽  
W. Keith Moser

The Levels-of-Growing-Stock study for ponderosa pine was a collective effort among western Research Stations within the US Forest Service. The experiment was established to test sustainable productivity across a wide range of densities by periodically thinning the plots. Beyond the original purposes for wood production, contemporary applications of these long-term studies have been to determine stand density effects on (i) both overstory and understory responses to stand development of even-aged ponderosa pine, (ii) biomass accumulation and carbon sequestration, (iii) plant diversity and wildlife habitats, and (iv) forest resiliency to insects and pathogens, droughts, and wildfires. Furthermore, these installations have served as a showpiece for the public and natural laboratories for professional foresters and students. For the past half century, the study has helped guide land managers and stakeholders on public and private lands about the value of thinning in overstocked young stands of ponderosa pine across its range. We hope that it will continue to serve as a springboard for addressing future issues facing forest management.  


Nature ◽  
2004 ◽  
Vol 432 (7013) ◽  
pp. 87-90 ◽  
Author(s):  
Jennifer L. Pierce ◽  
Grant A. Meyer ◽  
A. J. Timothy Jull

Sign in / Sign up

Export Citation Format

Share Document