Nutrient supply and belowground interaction alter responses to CO2 elevation in black spruce and white spruce

2020 ◽  
Vol 472 ◽  
pp. 118271 ◽  
Author(s):  
Qing-Lai Dang ◽  
Jacob Marfo ◽  
Fengguo Du ◽  
Md. Shah Newaz
Trees ◽  
2006 ◽  
Vol 20 (5) ◽  
pp. 633-641 ◽  
Author(s):  
Stephen J. Colombo ◽  
Colin W. G. Templeton

1989 ◽  
Vol 19 (3) ◽  
pp. 295-308 ◽  
Author(s):  
R. D. Whitney

In an 11-year study in northern Ontario, root rot damage was heaviest in balsam fir, intermediate in black spruce, and least in white spruce. As a result of root rot, 16, 11, and 6%, respectively, of dominant or codominant trees of the three species were killed or experienced premature windfall. Butt rot, which resulted from the upward extension of root rot into the boles of living trees, led to a scaled cull of 17, 12, and 10%, respectively, of gross merchantable volume of the remaining living trees in the three species. The total volume of wood lost to rot was, therefore, 33, 23, and 16%, respectively. Of 1108 living dominant and codominant balsam fir, 1243 black spruce, and 501 white spruce in 165 stands, 87, 68, and 63%, respectively, exhibited some degree of advanced root decay. Losses resulting from root rot increased with tree age. Significant amounts of root decay and stain (>30% of root volume) first occurred at 60 years of age in balsam fir and 80 years in black spruce and white spruce. For the three species together, the proportion of trees that were dead and windfallen as a result of root rot increased from an average of 3% at 41–50 years to 13% at 71–80 years and 26% at 101–110 years. The root rot index, based on the number of dead and windfallen trees and estimated loss of merchantable volume, also increased, from an average of 17 at 41–50 years to 40 at 71–80 years and 53 at 101–110 years. Death and windfall of balsam fir and black spruce were more common in northwestern Ontario than in northeastern Ontario. Damage to balsam fir was greater in the Great Lakes–St. Lawrence Forest region than in the Boreal Forest region. In all three tree species, the degree of root rot (decay and stain) was highly correlated with the number of dead and windfallen trees, stand age, and root decay at ground level (as a percentage of basal area) for a 10-tree sample.


1989 ◽  
Vol 121 (8) ◽  
pp. 691-697 ◽  
Author(s):  
G.G. Grant ◽  
W.H. Fogal ◽  
R.J. West ◽  
K.N. Slessor ◽  
G.E. Miller

AbstractElectroantennogram (EAG) responses from male Cydia strobilella (L.) indicated that (E)-8-dodecenyl acetate (E8-12:Ac) was the most stimulating of the dodecenyl and tetradecenyl compounds assayed. Field-screening tests, which included compounds previously reported as attractive, demonstrated that only E8-12:Ac was effective. The optimum trap dosage was 0.3–3 μg on red rubber septa. Catches of males were greater when traps were hung in the upper crown of either white spruce or black spruce.


2017 ◽  
Vol 47 (8) ◽  
pp. 1116-1122 ◽  
Author(s):  
Rongzhou Man ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Conifer winter damage results primarily from loss of cold hardiness during unseasonably warm days in late winter and early spring, and such damage may increase in frequency and severity under a warming climate. In this study, the dehardening dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) B.S.P.) were examined in relation to thermal accumulation during artificial dehardening in winter (December) and spring (March) using relative electrolyte leakage and visual assessment of pine needles and spruce shoots. Results indicated that all four species dehardened at a similar rate and to a similar extent, despite considerably different thermal accumulation requirements. Spring dehardening was comparatively faster, with black spruce slightly hardier than the other conifers at the late stage of spring dehardening. The difference, however, was relatively small and did not afford black spruce significant protection during seedling freezing tests prior to budbreak in late March and early May. The dehardening curves and models developed in this study may serve as a tool to predict cold hardiness by temperature and to understand the potential risks of conifer cold injury during warming–freezing events prior to budbreak.


Author(s):  
Marilyn W. Walker ◽  
Mary E. Edwards

Historically the boreal forest has experienced major changes, and it remains a highly dynamic biome today. During cold phases of Quaternary climate cycles, forests were virtually absent from Alaska, and since the postglacial re-establishment of forests ca 13,000 years ago, there have been periods of both relative stability and rapid change (Chapter 5). Today, the Alaskan boreal forest appears to be on the brink of further significant change in composition and function triggered by recent changes that include climatic warming (Chapter 4). In this chapter, we summarize the major conclusions from earlier chapters as a basis for anticipating future trends. Alaska warmed rapidly at the end of the last glacial period, ca 15,000–13,000 years ago. Broadly speaking, climate was warmest and driest in the late glacial and early Holocene; subsequently, moisture increased, and the climate gradually cooled. These changes were associated with shifts in vegetation dominance from deciduous woodland and shrubland to white spruce and then to black spruce. The establishment of stands of fire-prone black spruce over large areas of the boreal forest 5000–6000 years ago is linked to an apparent increase in fire frequency, despite the climatic trend to cooler and moister conditions. This suggests that long-term features of the Holocene fire regime are more strongly driven by vegetation characteristics than directly by climate (Chapter 5). White spruce forests show decreased growth in response to recent warming, because warming-induced drought stress is more limiting to growth than is temperature per se (Chapters 5, 11). If these environmental controls persist, projections suggest that continued climate warming will lead to zero net annual growth and perhaps the movement of white spruce to cooler upland forest sites before the end of the twenty-first century. At the southern limit of the Alaskan boreal forest, spruce bark beetle outbreaks have decimated extensive areas of spruce forest, because warmer temperatures have reduced tree resistance to bark beetles and shortened the life cycle of the beetle from two years to one, shifting the tree-beetle interaction in favor of the insect (Chapter 9).


2011 ◽  
Vol 28 (3) ◽  
pp. 146-151 ◽  
Author(s):  
Alain Paquette ◽  
Jean-Pierre Girard ◽  
Denis Walsh

Abstract Although studies in the past have reported that the deeper planting of conifers has no effect on seedling performance, most planting guidelines in use today still recommend that seedlings be planted to the rootcollar. Past studies were mostly observational, used bareroot seedlings, and often reported early results from just one or two depths of planting treatments. Most of the results available regarding planting depth for boreal species are anecdotal, although they are planted by the hundreds of millions every year. The present study reports no short-term (1 year) or long-term (15 to 19 years) negative effect of planting depth on the survival and height and diameter growth of black spruce, white spruce, and jack pine seedlings over three large, replicated experiments in the boreal forest of eastern and northern Quebec (eastern Canada). Four different depth treatments were compared, from manual planting at the rootcollar to the deepest mechanical planting treatment at 10 cm or more, making this the largest, longest-lasting study of its kind. Although, as expected, important differences in growth were present between species, all three commonly planted conifers reacted similarly to the planting depth treatments (no effect). This result can in part be attributed to an almost perfect control of frost heaving in the deepest two treatments. Planting depth effects were assessed using analysis of variance, multiple Tukey honestly significant difference, and uncorrected pairwise one-tailed t-tests to increase the probability of detecting a negative effect. Absolute differences and effect sizes (generally small and often positive with greater depths) were also analyzed.


2003 ◽  
Vol 20 (4) ◽  
pp. 167-174
Author(s):  
Nobutaka Nakamura ◽  
Paul M. Woodard ◽  
Lars Bach

Abstract Tree boles in the boreal forests of Alberta, Canada will split once killed by a stand-replacing crown fire. A total of 1,485 fire-killed trees were sampled, 1 yr after burning, in 23 plots in 14 widely separated stands within a 370,000 ha fire. Sampling occurred in the Upper and Lower Foothills natural subregions. The frequency of splitting varied by species but averaged 41% for all species. The order in the frequency of splitting was balsam fir, black spruce, white spruce and lodgepole pine. The type of splitting (straight, spiral, or multiple) varied by species, as did the position of the split on the tree bole. Aspect or solar angle was not statistically related to the type or occurrence of splitting.


Sign in / Sign up

Export Citation Format

Share Document