Design of one-dimensional power spectrum using two-dimensional fast Fourier transform for discrimination of paper-based kraft tapes

2015 ◽  
Vol 257 ◽  
pp. 329-336 ◽  
Author(s):  
Sara Sasaoka ◽  
Koichi Saito ◽  
Kenjirou Higashi ◽  
Waree Limwikrant ◽  
Kunikazu Moribe ◽  
...  

Author(s):  
W P Dong ◽  
K J Stout

Two-dimensional power spectrums of engineering surfaces contain plenty of information that is important and valuable for surface characterization. However, the characteristics of the two-dimensional spectrums are largely unknown and the algorithm to implement them is not familiar to many engineers or researchers. This paper describes a detailed procedure to implement the two-dimensional fast Fourier transform and power spectrum for surface roughness in three dimensions. Methods used to extract information from the spectrums are introduced. In order to perform two-dimensional spectral analysis and to have a comprehensive understanding of the characteristics of engineering surfaces, an atlas of the two-dimensional spectrums of representative engineering surfaces are presented. The properties of the spectrums are discussed in conjunction with theoretical analysis and visual characterization of the presented spectrums.



1989 ◽  
Vol 52 (3) ◽  
pp. 333-336 ◽  
Author(s):  
Mulugeta H. Serzu ◽  
Wooil M. Moon




2013 ◽  
Vol 40 (3) ◽  
pp. 0308002
Author(s):  
张敏 Zhang Min ◽  
唐锋 Tang Feng ◽  
王向朝 Wang Xiangzhao ◽  
戴凤钊 Dai Fengzhao


1979 ◽  
Vol 50 ◽  
pp. 30-1-30-6
Author(s):  
Claude Aime

AbstractMichelson,one-dimensional, and two-dimensional apertures are used to obtain the statistical properties of the solar granulation. The calibration of the power spectrum is performed via Michelson stellar interferometry as well as by the use of changes in seeing conditions during speckle-interferometric measurements. The correction of 40 analyses, determined with Fried's parameter ro ranging between 2.5 cm and 11.5 cm, provides satisfactory convergence for frequencies up to 3 cycles per arc second



2020 ◽  
Vol 149 ◽  
pp. 02010 ◽  
Author(s):  
Mikhail Noskov ◽  
Valeriy Tutatchikov

Currently, digital images in the format Full HD (1920 * 1080 pixels) and 4K (4096 * 3072) are widespread. This article will consider the option of processing a similar image in the frequency domain. As an example, take a snapshot of the earth's surface. The discrete Fourier transform will be computed using a two-dimensional analogue of the Cooley-Tukey algorithm and in a standard way by rows and columns. Let us compare the required number of operations and the results of a numerical experiment. Consider the examples of image filtering.



1993 ◽  
Vol 47 (7) ◽  
pp. 863-868 ◽  
Author(s):  
Satoshi Takahashi ◽  
Jeung Sun Ahn ◽  
Shuji Asaka ◽  
Teizo Kitagawa

A system for multichannel Fourier transform spectroscopy was constructed by using a CCD detector and an interferometer consisting of Savart plate held between two polarizers, and practical problems associated with its application to Raman experiments were investigated. The novel idea of the present system lies in avoiding the aliasing distortion, seen in the spectrum measured with a one-dimensional multichannel detector, by arranging the principal axis of the sensitized plane of the CCD detector so that it is not coincident with the direction of the fringe pattern of the interferogram. The observed interferogram suffered geometrical distortion due to incompleteness of the Savart plate. In order to circumvent this problem, an algorithm for correcting this distortion by referring to the interferogram of appropriate monochromatic light was successfully developed. The resolution of a Raman spectrum obtained for indene was ∼40 cm−1, in agreement with the theoretical value expected for this system.



Sign in / Sign up

Export Citation Format

Share Document