Rheological, structural, ultraviolet protection and oxygen barrier properties of linear low- density polyethylene films reinforced with zinc oxide (ZnO) nanoparticles

2017 ◽  
Vol 13 ◽  
pp. 20-26 ◽  
Author(s):  
Jasim Ahmed ◽  
Yasir Ali Arfat ◽  
Hassan Al-Attar ◽  
Rafael Auras ◽  
Mohammad Ejaz
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Razieh Niazmand ◽  
Bibi Marzieh Razavizadeh ◽  
Farzaneh Sabbagh

The physical, thermal, mechanical, optical, microstructural, and barrier properties of low-density polyethylene films (LDPE) containing ferula asafoetida leaf and gum extracts were investigated. Results showed a reduction in elasticity and tensile strength with increasing extract concentration in the polymer matrix. The melting temperature and enthalpy increased with increasing concentration of extracts. The films containing extracts had lower L∗ and a∗ and higher b∗ indices. The films containing leaf extract had more barrier potential to UV than the gum extracts. The oxygen permeability in films containing 5% of leaf and gum extracts increased by 2.3 and 2.1 times, respectively. The morphology of the active films was similar to bubble swollen islands, which was more pronounced at higher concentrations of gum and leaf extracts. FTIR results confirmed some chemical interactions of ferula extracts with the polymer matrix. At the end of day 14th, the growth rate of Aspergillus niger and Saccharomyces cerevisea in the presence of the PE-Gum-5 reduced more than PE-Leaf-5 (3.7 and 2.4 logarithmic cycles, respectively) compared to the first day. Our findings showed that active LDPE films have desire thermo-mechanical and barrier properties for food packaging.


2003 ◽  
Vol 90 (11) ◽  
pp. 2938-2944 ◽  
Author(s):  
Siddaramaiah ◽  
T. Jeevananda ◽  
K. S. Jagadeesh ◽  
H. Somashekarappa ◽  
R. Somashekar

2016 ◽  
Vol 81 (5) ◽  
pp. 589-605 ◽  
Author(s):  
Nenad Djordjevic ◽  
Aleksandar Marinkovic ◽  
Jasmina Nikolic ◽  
Sasa Drmanic ◽  
Milica Rancic ◽  
...  

The morphological, thermal and barrier properties of low-density polyethylene/polycaprolactone-modified nanocellulose hybrid materials were investigated in this paper. Nanonocelulose/magnetite (NC-Fe3O4) nanocomposite and maleic acid functionalized NC/magnetite (NCMA-Fe3O4) nanocomposite were prepared and used as filler at various concentrations (5, 10 and 15 wt. %) in polycaprolactone (PCL) layer. PE was coated with PCL/NC/magnetite layer. The addition of the filler did not unfavorably affect the inherent properties of the polymer, especially its barrier properties. Oxygen permeation measurements show that the oxygen barrier properties of magnetite enriched PCL film were improved due to chemical activity of added material. The highest level of barrier capacity was observed for PE samples coated with PCL based composite with NCMA-Fe3O4 micro/-nanofiller, which implies the significant contribution of nanocellulose surface modification with maleic anhydride residue to improved barrier properties.


Sign in / Sign up

Export Citation Format

Share Document