active food packaging
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 212)

H-INDEX

45
(FIVE YEARS 14)

2022 ◽  
Vol 31 ◽  
pp. 100803
Author(s):  
Debarshi Nath ◽  
Santhosh R ◽  
Kunal Pal ◽  
Preetam Sarkar

2022 ◽  
Vol 11 (1) ◽  
pp. e40111125141
Author(s):  
Laura Cassol Mohr Celuppi ◽  
Ana Paula Capelezzo ◽  
Leticia Bavaresco Cima ◽  
Rubieli Carla Frezza Zeferino ◽  
Micheli Zanetti ◽  
...  

The development of new antimicrobial polymeric materials is in prominence due to its versatility of applications, especially for the manufacture of active packaging food. Cellulose acetate is an example of polymeric material used to this purpose, due to its characteristics of biodegradability and easy processing, in addition its natural origin and no toxicity. Geranyl acetate is an ester derived from geraniol, which has good antimicrobial properties and good thermal stability, which makes it interesting to be applied as an antimicrobial agent, avoiding the trivial and often problematic metallic nanoparticles and also volatile essential oils. In this work, antibacterial and antifungal cellulose acetate films were obtained through the incorporation of geranyl acetate ester (in concentrations of 0.5 and 1.0% v/v), by using the casting technique. This new material was tested against gram-positive and gram-negative bacteria and fungi. Results showed that it is possible to obtain antibacterial and antifungal cellulose acetate films with the incorporation of geranyl acetate ester, with excellent antibacterial activity against gram-positive and gram-negative bacteria and good antifungal activity.


Food systems ◽  
2022 ◽  
Vol 4 (4) ◽  
pp. 255-258
Author(s):  
A. S. Ammar ◽  
W. A. Bazaraa

In the past two decades, nano-science is widely used in different applications and the increased interest in the utilization of nanoparticles in food processing is clear. Such applications include processing, packaging, development of functional food, safety, foodborne pathogens detection, and shelf-life extension. In this article, the essential facts and the latest uses of nano-science in fruit and vegetable juices were described. The green synthesis of nanoparticles with antioxidant, antibacterial and antifungal characteristics is of great interest in food preservation. These nanoparticles such as metals, oxidized metals and its bioactivity in juice were reviewed. The current procedures to prepare nanojuice including nanofiltration and the most recent nanomilling were presented. Beside the preparation, special emphasis has also been given to the chemical as well as the biological (microbial and enzymatic) quality of the produced nanojuice. The role of nanotechnology in the development of the smart and the active food packaging systems for the improvement of food shelf- life and quality was also discussed. Since the physical and chemical characteristics of nanoparticles are completely different from those of macro-size. Therefore, special and urgent attention by responsible authorities should be given and effective policies should be applied for food products to ensure product quality, customer health and safety as well as the environmental protection.


2022 ◽  
Vol 8 ◽  
Author(s):  
Cristina Muñoz-Shugulí ◽  
Francisco Rodríguez-Mercado ◽  
Carolina Mascayano ◽  
Andrea Herrera ◽  
Julio E. Bruna ◽  
...  

Background: Allyl isothiocyanate is an excellent antimicrobial compound that has been applied in the development of active food packaging materials in the last years. However, the high volatility of this compound could prevent a lasting effect over time. In order to avoid this problem, cyclodextrin inclusion complexes have been proposed as an alternative, being beta-cyclodextrin (β-CD) as the main candidate. In addition, β-CD could act as a relative humidity-responsive nanoparticle. In this regard, the aim of this study was to develop inclusion complexes based on β-CD and AITC as relative humidity-responsive agents, which can be used in the design of active food packaging materials.Methods: Two different β-CD:AITC inclusion complexes (2:1 and 1:1 molar ratios) were obtained by the co-precipitation method. Entrapment efficiency was determined by gas chromatography, while inclusion complexes were characterized through thermal, structural, and physicochemical techniques. Antifungal capacity of inclusion complexes was determined in a headspace system. Furthermore, the AITC release from inclusion complexes to headspace at different percentages of relative humidity was evaluated by gas chromatography, and this behavior was related with molecular dynamic studies.Key Findings and Conclusions: The entrapment efficiency of inclusion complexes was over to 60%. Two coexisting structures were proposed for inclusion complexes through spectroscopic analyses and molecular dynamic simulation. The water sorption capacity of inclusion complexes depended on relative humidity, and they exhibited a strong fungicide activity against Botrytis cinerea. Furthermore, the AITC release to headspace occurred in three stages, which were related with changes in β-CD conformational structure by water sorption and the presence of the different coexisting structures. In addition, a strong influence of relative humidity on AITC release was evidenced. These findings demonstrate that β-CD:AITC inclusion complexes could be used as potential antifungal agents for the design of food packaging materials, whose activity would be able to respond to relative humidity changes.


2022 ◽  
pp. 291-306
Author(s):  
Christopher J. Doona ◽  
F.E. Feeherry ◽  
K. Kustin ◽  
C. Charette ◽  
E. Forster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document