?-Tocopherol decreases tumor necrosis factor-? mRNA and protein from activated human monocytes by inhibition of 5-lipoxygenase

2005 ◽  
Vol 38 (9) ◽  
pp. 1212-1220 ◽  
Author(s):  
S DEVARAJ ◽  
I JIALAL
Life Sciences ◽  
1991 ◽  
Vol 48 (26) ◽  
pp. 2557-2562 ◽  
Author(s):  
Eduardo Arzt ◽  
Mónica Costas ◽  
S. Finkielman ◽  
Victor E. Nahmod

1989 ◽  
Vol 9 (5) ◽  
pp. 2239-2243 ◽  
Author(s):  
K Imamura ◽  
D Spriggs ◽  
T Ohno ◽  
D Kufe

Botulinum toxins are potent neurotoxins which block the release of neurotransmitters. The effects of these toxins on hematopoietic cells, however, are unknown. Monocytes secrete a variety of polypeptide growth factors, including tumor necrosis factor (TNF). In the study reported here, the effects of botulinum toxin type D on the secretion of TNF from human monocytes were examined. The results demonstrate that botulinum toxin type D inhibits the release of TNF from monocytes activated by lipopolysaccharide (LPS) but not by 12-O-tetradecanoylphorbol-13-acetate. Botulinum toxin type D had no detectable effect on intracellular TNF levels in LPS-treated monocytes, indicating that the effects of this toxin involve the secretory process. This inhibitory effect of botulinum toxin type D on TNF secretion from LPS-treated monocytes was partially reversed by treatment with 12-O-tetradecanoylphorbol-13-acetate or introduction of guanosine 5'-[gamma-thio]triphosphate into these cells. The results demonstrate that TNF secretion is regulated by at least two distinct guanine nucleotide-binding proteins, one responsible for the activation of phospholipase C and another which acts as a substrate for botulinum toxin type D. ADP-ribosylation of monocyte membranes by botulinum toxin type D demonstrated the presence of three substrates with Mrs of 45,000, 21,000, and 17,000. While the role of these substrates in exocytosis is unknown, the results suggest that the Mr 21,000 substrate is involved in a process other than TNF secretion.


Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1278-1288 ◽  
Author(s):  
HM Wolf ◽  
MB Fischer ◽  
H Puhringer ◽  
A Samstag ◽  
E Vogel ◽  
...  

Abstract While the protective effect of IgA antibodies against infection of the mucosal surfaces is well documented, the mechanisms involved are not entirely clear. The aim of the current study is to investigate the effect of human serum IgA on the release of inflammatory cytokines in human monocytes activated with a particulate stimulus, Haemophilus influenzae type b (Hib), or soluble lipopolysaccharide (LPS) purified from Escherichia coli. Our results show that IgA downregulates tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) production, whereas IgG examined in parallel had no effect. IgA had no inhibitory effect on Hib-induced granulocyte-macrophage colony-stimulating factor release. TNF-alpha and IL-6 release were downmodulated if IgA was present during cytokine induction, and IgA was also inhibitory if added to Hib-pretreated monocytes during the phase of cytokine release. These findings indicate that there are at least two mechanisms whereby IgA antibodies can downregulate TNF-alpha and IL-6 release in human monocytes: by a mechanism acting during the time of monocyte activation, and a mechanism that downregulates the production and/or the release of these cytokines in activated monocytes. Regulation of TNF-alpha and IL-6 release by IgA may be among the antiinflammatory mechanisms preventing an uncontrolled release of potentially noxious levels of inflammatory cytokines during acute and/or chronic inflammation.


Sign in / Sign up

Export Citation Format

Share Document