Post-transcriptional Regulation of Sod2 is Important for Rapid Protein Translation Under Anchorage Independence

2019 ◽  
Vol 145 ◽  
pp. S69
2021 ◽  
Vol 7 (2) ◽  
pp. 26
Author(s):  
Nicolas Munz ◽  
Luciano Cascione ◽  
Luca Parmigiani ◽  
Chiara Tarantelli ◽  
Andrea Rinaldi ◽  
...  

Stressful conditions induce the cell to save energy and activate a rescue program modulated by mammalian target of rapamycin (mTOR). Along with transcriptional and translational regulation, the cell relies also on post-transcriptional modulation to quickly adapt the translation of essential proteins. MicroRNAs play an important role in the regulation of protein translation, and their availability is tightly regulated by RNA competing mechanisms often mediated by long noncoding RNAs (lncRNAs). In our paper, we simulated the response to growth adverse condition by bimiralisib, a dual PI3K/mTOR inhibitor, in diffuse large B cell lymphoma cell lines, and we studied post-transcriptional regulation by the differential analysis of exonic and intronic RNA expression. In particular, we observed the upregulation of a lncRNA, lncTNK2-2:1, which correlated with the stabilization of transcripts involved in the regulation of translation and DNA damage after bimiralisib treatment. We identified miR-21-3p as miRNA likely sponged by lncTNK2-2:1, with consequent stabilization of the mRNA of p53, which is a master regulator of cell growth in response to DNA damage.


2021 ◽  
Author(s):  
Laura Piel ◽  
K. Shanmugha Rajan ◽  
Giovanni Bussotti ◽  
Hugo Varet ◽  
Rachel Legendre ◽  
...  

The protozoan parasite Leishmania donovani causes fatal human visceral leishmaniasis in absence of treatment. Genome instability has been recognized as a driver in Leishmania fitness gain in response to environmental change or chemotherapy. How genome instability generates beneficial phenotypes despite potential deleterious gene dosage effects is unknown. Here we address this important open question applying experimental evolution and integrative systems approaches on parasites adapting to in vitro culture. Phenotypic analyses of parasites from early and late stages of culture adaptation revealed an important fitness tradeoff, with selection for accelerated growth (fitness gain) impairing infectivity (fitness costs). Comparative genomics, transcriptomics and proteomics analyses revealed a complex regulatory network driving parasite fitness, with genome instability causing highly reproducible, gene dosage-dependent changes in protein linked to post-transcriptional regulation. These in turn were associated with a gene dosage-independent reduction in flagellar transcripts and a coordinated increase in abundance of coding and non-coding RNAs known to regulate ribosomal biogenesis and protein translation. We correlated differential expression of small nucleolar RNAs (snoRNAs) with changes in rRNA modification, providing first evidence that Leishmania fitness gain may be controlled by post-transcriptional and epitranscriptomic regulation. Our findings propose a novel model for Leishmania fitness gain, where differential regulation of mRNA stability and the generation of fitness-adapted ribosomes may potentially filter deleterious from beneficial gene dosage effects and provide proteomic robustness to genetically heterogenous, adapting parasite populations. This model challenges the current, genome-centric approach to Leishmania epidemiology and identifies the Leishmania non-coding small RNome as a potential novel source for biomarker discovery.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 43-OR
Author(s):  
DINA MOSTAFA ◽  
AKINORI TAKAHASHI ◽  
TADASHI YAMAMOTO

Oncogene ◽  
1997 ◽  
Vol 15 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Eric Cabannes ◽  
Marie-France Vives ◽  
Pierre-André Bédard

Sign in / Sign up

Export Citation Format

Share Document