gene dosage effects
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 13)

H-INDEX

26
(FIVE YEARS 1)

Author(s):  
Geralle Powell ◽  
Slavica Pavlovic-Djuranovic ◽  
Sergej Djuranovic

2021 ◽  
Author(s):  
Laura Piel ◽  
K. Shanmugha Rajan ◽  
Giovanni Bussotti ◽  
Hugo Varet ◽  
Rachel Legendre ◽  
...  

The protozoan parasite Leishmania donovani causes fatal human visceral leishmaniasis in absence of treatment. Genome instability has been recognized as a driver in Leishmania fitness gain in response to environmental change or chemotherapy. How genome instability generates beneficial phenotypes despite potential deleterious gene dosage effects is unknown. Here we address this important open question applying experimental evolution and integrative systems approaches on parasites adapting to in vitro culture. Phenotypic analyses of parasites from early and late stages of culture adaptation revealed an important fitness tradeoff, with selection for accelerated growth (fitness gain) impairing infectivity (fitness costs). Comparative genomics, transcriptomics and proteomics analyses revealed a complex regulatory network driving parasite fitness, with genome instability causing highly reproducible, gene dosage-dependent changes in protein linked to post-transcriptional regulation. These in turn were associated with a gene dosage-independent reduction in flagellar transcripts and a coordinated increase in abundance of coding and non-coding RNAs known to regulate ribosomal biogenesis and protein translation. We correlated differential expression of small nucleolar RNAs (snoRNAs) with changes in rRNA modification, providing first evidence that Leishmania fitness gain may be controlled by post-transcriptional and epitranscriptomic regulation. Our findings propose a novel model for Leishmania fitness gain, where differential regulation of mRNA stability and the generation of fitness-adapted ribosomes may potentially filter deleterious from beneficial gene dosage effects and provide proteomic robustness to genetically heterogenous, adapting parasite populations. This model challenges the current, genome-centric approach to Leishmania epidemiology and identifies the Leishmania non-coding small RNome as a potential novel source for biomarker discovery.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tao Ye ◽  
Yangyang Duan ◽  
Hayley W. S. Tsang ◽  
He Xu ◽  
Yuewen Chen ◽  
...  

AbstractThe dysregulation of gene dosage due to duplication or haploinsufficiency is a major cause of autosomal dominant diseases such as Alzheimer’s disease. However, there is currently no rapid and efficient method for manipulating gene dosage in a human model system such as human induced pluripotent stem cells (iPSCs). Here, we demonstrate a simple and precise method to simultaneously generate iPSC lines with different gene dosages using paired Cas9 nickases. We first generate a Cas9 nickase variant with broader protospacer-adjacent motif specificity to expand the targetability of double-nicking–mediated genome editing. As a proof-of-concept study, we examine the gene dosage effects on an Alzheimer’s disease patient-derived iPSC line that carries three copies of APP (amyloid precursor protein). This method enables the rapid and simultaneous generation of iPSC lines with monoallelic, biallelic, or triallelic knockout of APP. The cortical neurons generated from isogenically corrected iPSCs exhibit gene dosage-dependent correction of disease-associated phenotypes of amyloid-beta secretion and Tau hyperphosphorylation. Thus, the rapid generation of iPSCs with different gene dosages using our method described herein can be a useful model system for investigating disease mechanisms and therapeutic development.


2021 ◽  
Author(s):  
Geralle N. Powell ◽  
Slavica Pavlovic-Djuranovic ◽  
Sergej Djuranovic

ABSTRACTThe manipulation of gene activity through the creation of hypomorphic mutants has been a long-standing tool in examining gene function. Our previous studies have indicated that hypomorphic mutants could be created through the insertion of cis-regulatory sequences composed of consecutive adenosine nucleotides called polyA tracks. Here we confirm that this method can be used for the creation of hypomorphic mutants and functional characterization of membrane, secretory and endogenous proteins. Insertion of polyA tracks into the sequences of interleukin-2 and membrane protein CD20 results in a programmable reduction of mRNA stability and attenuation of protein expression regardless of the presence of signaling sequence. Likewise, CRISPR/Cas9 targeted insertion of polyA tracks in the coding sequence of endogenous human genes AUF1 and TP53 results in a programmable reduction of targeted protein and mRNA levels. Functional analyses of AUF1 engineered hypomorphs indicate a direct correlation between AUF1 gene levels and the stability of AUF1-regulated mRNAs. Hypomorphs of TP53 affect the expression of the downstream target genes differentially depending upon the severity of the hypomorphic mutation. Finally, decreases in TP53 protein affect the same cellular pathways in polyA track engineered cells as in cancer cells, indicating these variants’ biological relevance. These results highlight this technology’s power to create predictable, stable hypomorphs in recombinant or endogenous genes in combination with CRISPR/Cas9 engineering tools.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-11
Author(s):  
Sophie A. Herbst ◽  
Mattias Vesterlund ◽  
Rozbeh Jafari ◽  
Ioannis Siavelis ◽  
Matthias Stahl ◽  
...  

Background: Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western world and shows a very heterogeneous clinical course. While the genetic landscape of CLL has been well characterized during recent years it can only partially explain the underlying biology of this heterogeneity. Proteogenomics could offer a valuable tool to fill this gap and improve the understanding of CLL biology. Methods: Here, we performed a large proteogenomic analysis (n=263) of three clinically annotated CLL cohorts: For the discovery cohort (Germany_1: n=68) we performed in-depth HiRIEF LC-MS based proteomics (more than 9000 proteins quantified) alongside genome-, transcriptome and ex-vivo drug response-profiling with 43 clinically established drugs. The proteome of two additional validation cohorts (Germany_2: n=44, Sweden_1: n=89), were characterized by data-independent acquisition (DIA) mass spectrometry. Results: To connect the CLL genotype with the molecular phenotype, we investigated associations between recurrent genetic alterations of CLL, mRNA expression and protein abundance. We found that trisomy 12, IGHV status and SF3B1 mutations had the greatest impact on protein abundances. CLL specific recurrent chromosomal deletions and gains (trisomy 12, del17p, del13q, del11q, gain8q24) consistently impacted on gene expression and protein abundance through gene dosage effects. We explored functional consequences of these gene dosage effects and found that the additional copy of chromosome 12 increased the abundance of central B-cell receptor (BCR) protein complexes through cis- and trans-effects, which could explain the increased response of trisomy 12 patient samples to BCR inhibition. Somatic mutations of TP53, ATM and XPO1 were associated with less, but specific and biologically-relevant protein abundance changes. p53 for instance, was the most upregulated protein in TP53 mutated samples, owing to the known stabilisation of mutant p53. This effect was not detectable on transcript level. ATM and XPO1 protein abundances were significantly lower in ATM and XPO1 mutated cases, indicating loss-of-function phenotypes of these mutations. To understand global similarities and differences between CLL patients on the proteomic level, we performed unsupervised clustering and identified clinically meaningful subgroups. Unsupervised clustering of the proteomics data identified six subgroups with contrasting clinical behaviour. TP53 mutations, IGHV status, trisomy 12 and their interactions explained five subgroups. These results show that quantitative mass spectrometry-based proteomics distinguished clinically relevant subgroups of CLL. Most importantly, we identified a previously unappreciated subgroup of CLL, comprising 20% of all cases, which could be uncovered by proteomic profiling and showed no association with frequent genetic or transcriptional alterations. This new CLL subgroup was characterized by accelerated disease progression, SF3B1 mutation-independent splicing alterations, metabolomic reprogramming and increased vulnerability to inhibitors of metabolic enzymes and the proteasome. Surprisingly, major BCR signaling proteins were downregulated in this subgroup, suggesting less dependence on BCR activity. In accordance with this observation, an unsupervised analysis revealed that low levels of many BCR signaling proteins (e.g. PLCG2 and PIK3CD) were associated with short time to next treatment. The existence of this subgroup could be confirmed in the validation cohorts. Finally, we performed an unsupervised multi-omics factor analysis (MOFA) across all omics data sets in parallel. This unsupervised analysis confirmed the existence of the above identified CLL subgroups and an important role of SF3B1 mutation-independent splicing alterations in CLL. Conclusion: Our integrative multi-omics analysis provides the first comprehensive overview of the interplay between genetic variants, the transcriptome, and the proteome, along with functional consequences for drug response and clinical outcome in CLL. Importantly, we identified a new subgroup with accelerated disease progression, a distinct proteomic signature and a clinically exploitable drug sensitivity profile. Figure Disclosures Mueller-Tidow: BiolineRx: Research Funding; Daiichi Sankyo: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMBF: Research Funding; Wilhelm-Sander-Stiftung: Research Funding; Jose-Carreras-Siftung: Research Funding; Bayer AG: Research Funding; Deutsche Krebshilfe: Research Funding; Deutsche Forschungsgemeinschaft: Research Funding; Janssen-Cilag Gmbh: Membership on an entity's Board of Directors or advisory committees. Dreger:Neovii: Research Funding; Roche: Consultancy, Speakers Bureau; Riemser: Consultancy, Research Funding, Speakers Bureau; Novartis: Consultancy, Speakers Bureau; Janssen: Consultancy; Gilead: Consultancy, Speakers Bureau; AstraZeneca: Consultancy; AbbVie: Consultancy, Speakers Bureau. Stilgenbauer:Pharmacyclics: Consultancy, Honoraria, Other, Research Funding; Novartis: Consultancy, Honoraria, Other, Research Funding; Mundipharma: Consultancy, Honoraria, Other, Research Funding; Janssen-Cilag: Consultancy, Honoraria, Other: travel support, Research Funding; GlaxoSmithKline: Consultancy, Honoraria, Other: travel support, Research Funding; Gilead: Consultancy, Honoraria, Other: travel support, Research Funding; Genzyme: Consultancy, Honoraria, Other: travel support, Research Funding; Genentech: Consultancy, Honoraria, Other: travel support, Research Funding; F. Hoffmann-LaRoche: Consultancy, Honoraria, Other: travel support, Research Funding; Celgene: Consultancy, Honoraria, Other: travel support, Research Funding; Boehringer-Ingelheim: Consultancy, Honoraria, Other: travel support, Research Funding; Amgen: Consultancy, Honoraria, Other: travel support, Research Funding; AbbVie: Consultancy, Honoraria, Other: travel support, Research Funding. Tausch:Roche: Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria, Research Funding; Janssen-Cilag: Consultancy, Honoraria, Research Funding. Dietrich:Roche: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; KITE: Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
D. M. Badowska ◽  
M. M. Brzózka ◽  
N. Kannaiyan ◽  
C. Thomas ◽  
P. Dibaj ◽  
...  

Abstract The transcription factor TCF4 was confirmed in several large genome-wide association studies as one of the most significant schizophrenia (SZ) susceptibility genes. Transgenic mice moderately overexpressing Tcf4 in forebrain (Tcf4tg) display deficits in fear memory and sensorimotor gating. As second hit, we exposed Tcf4tg animals to isolation rearing (IR), chronic social defeat (SD), enriched environment (EE), or handling control (HC) conditions and examined mice with heterozygous deletion of the exon 4 (Tcf4Ex4δ+/−) to unravel gene-dosage effects. We applied multivariate statistics for behavioral profiling and demonstrate that IR and SD cause strong cognitive deficits of Tcf4tg mice, whereas EE masked the genetic vulnerability. We observed enhanced long-term depression in Tcf4tg mice and enhanced long-term potentiation in Tcf4Ex4δ+/− mice indicating specific gene-dosage effects. Tcf4tg mice showed higher density of immature spines during development as assessed by STED nanoscopy and proteomic analyses of synaptosomes revealed concurrently increased levels of proteins involved in synaptic function and metabolic pathways. We conclude that environmental stress and Tcf4 misexpression precipitate cognitive deficits in 2-hit mouse models of relevance for schizophrenia.


2020 ◽  
Vol 71 (20) ◽  
pp. 6297-6310
Author(s):  
Hui Du ◽  
Gang Wang ◽  
Jian Pan ◽  
Yue Chen ◽  
Tingting Xiao ◽  
...  

Abstract Trichomes and fruit spines are important traits that directly affect the appearance quality and commercial value of cucumber (Cucumis sativus). Tril (Trichome-less), encodes a HD-Zip IV transcription factor that plays a crucial role in the initiation of trichomes and fruit spines, but little is known about the details of the regulatory mechanisms involved. In this study, analysis of tissue expression patterns indicated that Tril is expressed and functions in the early stages of organ initiation and development. Expression of Tril under the control of its own promoter (the TrilPro::Tril-3*flag fragment) could partly rescue the mutant phenotypes of tril, csgl3 (cucumber glabrous 3, an allelic mutant of tril), and fs1 (few spines 1, a fragment substitution in the Tril promoter region), providing further evidence that Tril is responsible for the initiation of trichomes and fruit spines. In lines with dense spine, fs1-type lines, and transgenic lines of different backgrounds containing the TrilPro::Tril-3*flag foreign fragment, spine density increased in conjunction with increases in Tril expression, indicating that Tril has a gene dosage effect on fruit spine density in cucumber. Numerous Spines (NS) is a negative regulatory factor of fruit spine density. Characterization of the molecular and genetic interaction between Tril and NS/ns demonstrated that Tril functions upstream of NS with respect to spine initiation. Overall, our results reveal a novel regulatory mechanism governing the effect of Tril on fruit spine development, and provide a reference for future work on breeding for physical quality in cucumber.


Genetics ◽  
2020 ◽  
Vol 215 (3) ◽  
pp. 847-868
Author(s):  
Mario Santer ◽  
Hildegard Uecker

Bacteria often carry “extra DNA” in the form of plasmids in addition to their chromosome. Many plasmids have a copy number greater than one such that the genes encoded on these plasmids are present in multiple copies per cell. This has evolutionary consequences by increasing the mutational target size, by prompting the (transitory) co-occurrence of mutant and wild-type alleles within the same cell, and by allowing for gene dosage effects. We develop and analyze a mathematical model for bacterial adaptation to harsh environmental change if adaptation is driven by beneficial alleles on multicopy plasmids. Successful adaptation depends on the availability of advantageous alleles and on their establishment probability. The establishment process involves the segregation of mutant and wild-type plasmids to the two daughter cells, allowing for the emergence of mutant homozygous cells over the course of several generations. To model this process, we use the theory of multitype branching processes, where a type is defined by the genetic composition of the cell. Both factors—the availability of advantageous alleles and their establishment probability—depend on the plasmid copy number, and they often do so antagonistically. We find that in the interplay of various effects, a lower or higher copy number may maximize the probability of evolutionary rescue. The decisive factor is the dominance relationship between mutant and wild-type plasmids and potential gene dosage effects. Results from a simple model of antibiotic degradation indicate that the optimal plasmid copy number may depend on the specific environment encountered by the population.


2020 ◽  
Vol 87 (9) ◽  
pp. S177
Author(s):  
Claudia Modenato ◽  
Kuldeep Kumar ◽  
Clara Moreau ◽  
Catherine Schramm ◽  
Guillaume Huguet ◽  
...  

2019 ◽  
Author(s):  
Mario Santer ◽  
Hildegard Uecker

AbstractBacteria often carry “extra DNA” in form of plasmids in addition to their chromosome. Many plasmids have a copy number greater than one such that the genes encoded on these plasmids are present in multiple copies per cell. This has evolutionary consequences by increasing the mutational target size, by prompting the (transitory) co-occurrence of mutant and wild-type alleles within the same cell, and by allowing for gene dosage effects. We develop and analyze a mathematical model for bacterial adaptation to harsh environmental change if adaptation is driven by beneficial alleles on multicopy plasmids. Successful adaptation depends on the availability of advantageous alleles and on their establishment probability. The establishment process involves the segregation of mutant and wild-type plasmids to the two daughter cells, allowing for the emergence of mutant-homozygous cells over the course of several generations. To model this process, we use the theory of multi-type branching processes, where a type is defined by the genetic composition of the cell. Both factors – the number of adaptive alleles and their establishment probability – depend on the plasmid copy number, and they often do so antagonistically. We find that in the interplay of various effects, a lower or higher copy number may maximize the probability of evolutionary rescue. The decisive factor is the dominance relationship between mutant and wild-type plasmids and potential gene dosage effects. Results from a simple model of antibiotic degradation indicate that the optimal plasmid copy number may depend on the specific environment encountered by the population.


Sign in / Sign up

Export Citation Format

Share Document