scholarly journals Heme oxygenase-1(HO-1) regulates Golgi stress and attenuates endotoxin-induced acute lung injury through hypoxia inducible factor-1α (HIF-1α)/HO-1 signaling pathway

2021 ◽  
Vol 165 ◽  
pp. 243-253
Author(s):  
Xiangyun Li ◽  
Jianbo Yu ◽  
Lirong Gong ◽  
Yuan Zhang ◽  
Shuan Dong ◽  
...  
2020 ◽  
Vol 19 (3) ◽  
pp. 255-260
Author(s):  
Fan Yang ◽  
Lu Deng ◽  
MuHu Chen ◽  
Ying Liu ◽  
Jianpeng Zheng

Acute lung injury initiated systemic inflammation leads to sepsis. Septic mice show a series of degenerative changes in lungs as demonstrated by pulmonary congestion, alveolar collapse, inflammatory cell infiltration, and increased wet-todry weight in lungs. 6-Gingerol ameliorates histopathological changes and clinical outcome of the sepsis. The increase in the levels of tumor necrosis factor-α, interleukin-1 beta, interleukin-6, and interleukin-18 in septic mice were reduced by administration with 6-Gingerol. Also, 6-Gingerol attenuates sepsis-induced increase of malonaldehyde and decrease of catalase, superoxide, and glutathione. Enhanced phospho-p65, reduced nuclear factor erythropoietin-2-related factor 2, and heme oxygenase 1 in septic mice were reversed by administration with 6-Gingerol. In conclusion, 6-Gingerol demonstrates anti-inflammatory and antioxidant effects against sepsis associated acute lung injury through inactivation of nuclear factor-kappa B and activation of nuclear-factor erythroid 2-related factor 2 pathways.


2011 ◽  
Vol 11 (12) ◽  
pp. 2112-2117 ◽  
Author(s):  
Hui Yin ◽  
Xiangyong Li ◽  
Baohong Yuan ◽  
Bobin Zhang ◽  
Shilian Hu ◽  
...  

Author(s):  
Louise L. Dunn ◽  
Stephanie M.Y. Kong ◽  
Sergey Tumanov ◽  
Weiyu Chen ◽  
James Cantley ◽  
...  

Objective: Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body’s response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood. Approach and Results: Hmox1 deficient ( Hmox1 –/– ) mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in Hmox1 –/– mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O 2 ) recapitulated these key findings. Metabolomics analyses indicated a failure of Hmox1 –/– mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in Hmox1 –/– fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in Hmox1 –/– fibroblasts in response to hypoxia. Conclusions: Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1’s protection against ischemic injury independent of neovascularization.


Sign in / Sign up

Export Citation Format

Share Document