Integrated dual RNA-seq and dual iTRAQ of infected tissue reveals the functions of a diguanylate cyclase gene of Pseudomonas plecoglossicida in host-pathogen interactions with Epinephelus coioides

2019 ◽  
Vol 95 ◽  
pp. 481-490 ◽  
Author(s):  
Gang Luo ◽  
Lingmin Zhao ◽  
Xiaojin Xu ◽  
Yingxue Qin ◽  
Lixing Huang ◽  
...  
2020 ◽  
Vol 21 (5) ◽  
pp. 1627 ◽  
Author(s):  
Idrissa Diallo ◽  
Patrick Provost

Proteins have long been considered to be the most prominent factors regulating so-called invasive genes involved in host-pathogen interactions. The possible role of small non-coding RNAs (sRNAs), either intracellular, secreted or packaged in outer membrane vesicles (OMVs), remained unclear until recently. The advent of high-throughput RNA-sequencing (RNA-seq) techniques has accelerated sRNA discovery. RNA-seq radically changed the paradigm on bacterial virulence and pathogenicity to the point that sRNAs are emerging as an important, distinct class of virulence factors in both gram-positive and gram-negative bacteria. The potential of OMVs, as protectors and carriers of these functional, gene regulatory sRNAs between cells, has also provided an additional layer of complexity to the dynamic host-pathogen relationship. Using a non-exhaustive approach and through examples, this review aims to discuss the involvement of sRNAs, either free or loaded in OMVs, in the mechanisms of virulence and pathogenicity during bacterial infection. We provide a brief overview of sRNA origin and importance and describe the classical and more recent methods of identification that have enabled their discovery, with an emphasis on the theoretical lower limit of RNA sizes considered for RNA sequencing and bioinformatics analyses.


2019 ◽  
Vol 77 (6) ◽  
Author(s):  
Buket Baddal

ABSTRACT Pathogens constantly interact with their hosts and the environment, and therefore have evolved unique virulence mechanisms to target and breach host defense barriers and manipulate host immune response to establish an infection. Advances in technologies that allow genome mining, gene editing such as CRISPR/Cas9, genomic, epigenomic and transcriptomic studies such as dual RNA-seq, coupled with bioinformatics, have accelerated the field of host–pathogen interactions within a broad range of infection models. Underpinning of the molecular changes that accompany invasion of eukaryotic cells with pathogenic microorganisms at the intersection of host, pathogen and their local environment has provided a better understanding of infectious disease mechanisms and antimicrobial strategies. The recent evolution of physiologically relevant three-dimensional (3-D) tissue/organ models and microfluidic organ-on-chip devices also provided a window to a more predictive framework of infectious disease processes. These approaches combined hold the potential to highly impact discovery of novel drug targets and vaccine candidates of the future. Here, we review three of the available and emerging technologies—dual RNA-seq, CRISPR/Cas9 screening and organs-on-chips, applicable to the high throughput study and deciphering of interaction networks between pathogens and their hosts that are critical for the development of novel therapeutics.


2017 ◽  
Vol 13 (2) ◽  
pp. e1006033 ◽  
Author(s):  
Alexander J. Westermann ◽  
Lars Barquist ◽  
Jörg Vogel

Sign in / Sign up

Export Citation Format

Share Document