Determining CO2 diffusion coefficient in heavy oil in bulk phase and in porous media using experimental and mathematical modeling methods

Fuel ◽  
2020 ◽  
Vol 263 ◽  
pp. 116205 ◽  
Author(s):  
Xiang Zhou ◽  
Qi Jiang ◽  
Qingwang Yuan ◽  
Liehui Zhang ◽  
Jianwei Feng ◽  
...  
2011 ◽  
Vol 312-315 ◽  
pp. 1049-1054 ◽  
Author(s):  
Navid Mirjordavi ◽  
M. Kazemeini ◽  
R. Kharrat ◽  
M.H. Ghazanfari ◽  
A. Salehi

Molecular diffusion of gases in crude oils plays a crucial role in several oil recovery processes especially in cold-based production process. However, experimental data concerning CO2 diffusivity in heavy oils due to the tedious nature of diffusivity measurements are relatively rare in the open literature. In this work, a comprehensive experimental investigation of the effective molecular diffusion determination of CO2-heavy oil systems in homogeneous porous media was studied. The so-called pressure decay method was applied to measure the molecular diffusivity of carbon dioxide in heavy oil. Furthermore, effect of various parameters such as initial pressure, temperature and porous media on molecular diffusion coefficient have been analyzed and based upon experimental results, a new mathematical correlation for prediction of CO2-heavy oil molecular diffusion coefficient in presence of porous medium as a function of temperature was proposed.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Sixu Zheng ◽  
Daoyong Yang

By treating heavy oil as multiple pseudocomponents, techniques have been developed to experimentally and theoretically determine diffusion coefficients of CO2-heavy oil systems by coupling heat and mass transfer together with consideration of swelling effect. Experimentally, diffusion tests have been conducted for hot CO2-heavy oil systems with three different temperatures under a constant pressure by using a visualized pressure-volume-temperature (PVT) setup. The swelling of liquid phase in the PVT cell is continuously monitored and recorded during the measurements. Theoretically, a two-dimensional (2D) mathematical model incorporating the volume-translated Peng–Robinson equation of state (PR EOS) with a modified alpha function has been developed to describe heat and mass transfer for hot CO2-heavy oil systems. Heavy oil sample has been characterized as three pseudocomponents for accurately quantifying phase behavior of the CO2-heavy oil systems, while the binary interaction parameters (BIPs) are tuned with the experimentally measured saturation pressures. The diffusion coefficient of hot CO2 in heavy oil is then determined once the discrepancy between the experimentally measured dynamic swelling factors and theoretically calculated ones has been minimized. During the diffusion experiments, heat transfer is found to be dominant over mass transfer at the beginning and reach its equilibrium in a shorter time; subsequently, mass transfer shows its dominant effect. The enhanced oil swelling mainly occurs during the coupled heat and mass transfer stage. CO2 diffusion coefficient in heavy oil is found to increase with temperature at a given pressure, while it can be explicitly correlated as a function of temperature.


RSC Advances ◽  
2021 ◽  
Vol 11 (32) ◽  
pp. 19712-19722
Author(s):  
Zhixing Wang ◽  
Jirui Hou

Herein, the pressure decay method was improved to obtain the CO2 diffusion coefficient in fractured-vuggy carbonate reservoirs at 393 K and 50 MPa and obtained good correlation results between bulk and porous media by porosity and tortuosity.


2014 ◽  
Vol 61 ◽  
pp. 603-606 ◽  
Author(s):  
Ying Teng ◽  
Yu Liu ◽  
Yongchen Song ◽  
Lanlan Jiang ◽  
Yuechao Zhao ◽  
...  

2018 ◽  
Vol 21 (12) ◽  
pp. 1253-1263
Author(s):  
Ruifei Wang ◽  
Hongqing Song ◽  
Jiulong Wang ◽  
Yuhe Wang

Sign in / Sign up

Export Citation Format

Share Document