Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification

Fuel ◽  
2020 ◽  
Vol 269 ◽  
pp. 117331 ◽  
Author(s):  
Mesut Gür ◽  
Engin Deniz Canbaz
Author(s):  
CW Mallett

Effective environmental management of an underground coal gasification pilot has been demonstrated at Kogan in Queensland, Australia. It commenced with selection of a suitable site with a coal seam surrounded by impervious rocks that provided a gas seal for the gasifier and sufficient groundwater pressure to constrain lateral loss of gas and chemicals through coal fractures. Project infrastructure was specified to withstand the temperatures and pressures experienced during gasification and gas processing. During syngas production in the second gasifier, Panel 2, it was shown that all pyrolysis products of environmental concern were retained within the gasifier. This was achieved by maintaining continuous groundwater inflow into the gasifier cavity through control of the relative pressures of the gasifier and surrounding groundwater. In Panel 1, it was shown that when pyrolysis products migrated out of the cavity, they were quickly detected and by modifying relative pressures to increase groundwater inflow the original groundwater conditions were restored. Following production, the cavities were decommissioned and in Panel 2 steam cleaning of the cavity removed 92% of the chemical load from the cavity. As a result, relatively low concentrations of pyrolysis products remained in the cavity. Fate and transport modelling predicted that these products will not migrate into the regional groundwater and will naturally degrade within three decades.


2012 ◽  
Author(s):  
Dries du Plooy ◽  
Jeno Mazik ◽  
Bela Szanyi ◽  
Peter Majoros ◽  
Balazs Koroknai ◽  
...  

Fuel ◽  
2017 ◽  
Vol 190 ◽  
pp. 435-443 ◽  
Author(s):  
Zhangqing Wang ◽  
Jie Liang ◽  
Longxi Shi ◽  
Jianfen Xi ◽  
Shuang Li ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Dipankar Chatterjee ◽  
◽  
Satish Gupta ◽  
Chebolu Aravind ◽  
Rakesh Roshan

Author(s):  
Marian Wiatowski ◽  
Roksana Muzyka ◽  
Krzysztof Kapusta ◽  
Maciej Chrubasik

AbstractIn this study, the composition of tars collected during a six-day underground coal gasification (UCG) test at the experimental mine ‘Barbara’ in Poland in 2013 was examined. During the test, tar samples were taken every day from the liquid product separator and analysed by the methods used for testing properties of typical coke oven (coal) tar. The obtained results were compared with each other and with the data for coal tar. As gasification progressed, a decreasing trend in the water content and an increasing trend in the ash content were observed. The tars tested were characterized by large changes in the residue after coking and content of parts insoluble in toluene and by smaller fluctuations in the content of parts insoluble in quinoline. All tested samples were characterized by very high distillation losses, while for samples starting from the third day of gasification, a clear decrease in losses was visible. A chromatographic analysis showed that there were no major differences in composition between the tested tars and that none of the tar had a dominant component such as naphthalene in coal tar. The content of polycyclic aromatic hydrocarbons (PAHs) in UCG tars is several times lower than that in coal tar. No light monoaromatic hydrocarbons (benzene, toluene, ethylbenzene and xylenes—BTEX) were found in the analysed tars, which results from the fact that these compounds, due to their high volatility, did not separate from the process gas in the liquid product separator.


Sign in / Sign up

Export Citation Format

Share Document