Effective application of proppants during the hydraulic fracturing of coal seam gas reservoirs: Implications from laboratory testings of propped and unpropped coal fractures

Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121394
Author(s):  
M.A.A. Ahamed ◽  
M.S.A. Perera ◽  
D. Elsworth ◽  
P.G. Ranjith ◽  
S.K.M. Matthai ◽  
...  
2020 ◽  
Vol 34 (5) ◽  
pp. 5566-5577 ◽  
Author(s):  
Faisal Ur Rahman Awan ◽  
Alireza Keshavarz ◽  
Hamed Akhondzadeh ◽  
Sarmad Al-Anssari ◽  
Ahmed Al-Yaseri ◽  
...  

Fuel ◽  
2019 ◽  
Vol 236 ◽  
pp. 179-189 ◽  
Author(s):  
K.H.S.M. Sampath ◽  
M.S.A. Perera ◽  
D. Elsworth ◽  
P.G. Ranjith ◽  
S.K. Matthai ◽  
...  

2018 ◽  
Author(s):  
Xi Zhang ◽  
Bisheng Wu ◽  
Luke Connell ◽  
Yanhui Han ◽  
Robert Jeffrey

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 941 ◽  
Author(s):  
Dirk Mallants ◽  
Elise Bekele ◽  
Wolfgang Schmid ◽  
Konrad Miotlinski ◽  
Andrew Taylor ◽  
...  

Source-pathway-receptor analyses involving solute migration pathways through soil and shallow groundwater are typically undertaken to assess how people and the environment could come into contact with chemicals associated with coal seam gas operations. For the potential short-term and long-term release of coal seam gas fluids from storage ponds, solute concentration and dilution factors have been calculated using a water flow and solute transport modelling framework for an unsaturated zone-shallow groundwater system. Uncertainty about dilution factors was quantified for a range of system parameters: (i) leakage rates from storage ponds combined with recharge rates, (ii) a broad combination of soil and groundwater properties, and (iii) a series of increasing travel distances through soil and groundwater. Calculated dilution factors in the soil increased from sand to loam soil and increased with an increasing recharge rate, while dilution decreased for a decreasing leak rate and leak duration. In groundwater, dilution factors increase with increasing aquifer hydraulic conductivity and riverbed conductance. For a hypothetical leak duration of three years, the combined soil and groundwater dilution factors are larger than 6980 for more than 99.97% of bores that are likely to be farther than 100 m from the source. Dilution factors were more sensitive to uncertainty in leak rates than recharge rates. Based on this dilution factor, a comparison of groundwater predicted environmental concentrations and predicted no-effect concentrations for a subset of hydraulic fracturing chemicals used in Australia revealed that for all but two of the evaluated chemicals the estimated groundwater concentration (for a hypothetical water bore at 100 m from the solute source) is smaller than the no-effect concentration for the protection of aquatic ecosystems.


2015 ◽  
Author(s):  
Alireza Keshavarz ◽  
Alexander Badalyan ◽  
Themis Carageorgos ◽  
Pavel Bedrikovetsky ◽  
Ray Johnson

Author(s):  
Mohammadreza Zare Reisabadi ◽  
Manouchehr Haghighi ◽  
Alireza Salmachi ◽  
Mohammad Sayyafzadeh ◽  
Abbas Khaksar

Sign in / Sign up

Export Citation Format

Share Document