Knock recognition based on vibration signal and Wiebe function in a heavy-duty spark ignited engine fueled with Methane

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 122957
Author(s):  
Pierpaolo Napolitano ◽  
Irina Jimenez ◽  
Benjamín Pla ◽  
Carlo Beatrice
Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052034
Author(s):  
I Kolesnikov ◽  
P Koropets ◽  
V Avilov

Abstract The article describes studies of heavy-duty metal-polymer tribosystems: wheel-brake pad and pyatnik-podpyatnik of rolling stock, as well as spline couplings of the MI-26 helicopter tail rotor transmission. Tests of the wheel - brake pad system were carried out on an inertial stand with two-way braking at loads and speeds close to real operating conditions. Methods for modifying polymers, fillers, and nanoscale additives have been developed for the Pyatnik - podpyatnik tribosystem of rolling stock. To increase the wear resistance of work surfaces two-layer carbon fibers were applied to the spline couplings. DLC- coatings. Bench tests of these coatings showed a 4.5-fold reduction in wear when testing full-scale slots with a load of 30,000 kg. H and the number of completed cycles in 1,000,000. Methods for monitoring spline couplings based on the analysis of the frequency spectrum of the acoustic-emission (AE) vibration signal generated during the operation of the friction unit are considered. The results of studying the working state of spline couplings obtained by vibration diagnostics in the acoustic frequency range are presented. The state estimation is based on both the characteristics of the time signal and the transformation of the signal in the frequency domain using modal decomposition of the signal using Hilbert-Huang transformations. It is shown that for the effective for monitoring heavy-duty tribosystems, it is advisable to use neural networks.


Author(s):  
Jinlong Liu ◽  
Cosmin E. Dumitrescu

Abstract The conversion of existing heavy-duty diesel engines to lean natural-gas (NG) spark ignition can be achieved by replacing the diesel injector with a spark plug and fumigating the NG into the intake manifold. While the original fast-burn diesel chamber will offset the lower NG flame speed, it will result in a two-stage combustion process (a stage inside and another outside the bowl). However, experimental data at more advanced spark timing, equivalence ratio of 0.8, and mean piston speed of 6.5 m/s suggested an additional combustion stage (i.e., three combustion stages). A three-dimensional (3D) computational fluid dynamics (CFD) simulation and a zero-dimensional triple Wiebe-function model were used to better understand the phenomena. While 78% fuel burned inside the bowl, burning rate reduced significantly when the flame approached the squish entrance and the bowl bottom. Moreover, the triple Wiebe-function indicated that the burn inside the squish was also divided into two separate combustion stages, due to the particularities of in-cylinder flow before and after top dead center. The first stage was fast and took place inside the compression stroke. The second took place in the expansion stroke and produced a short-lived increase in the burning rate, probably due to the increasing squish height during the expansion stroke and the increased combustion-induced turbulence, hence the third heat-release peak. Overall, these findings support the need for further investigations of combustion characteristics in such converted engines, to benefit their efficiency and emissions.


2013 ◽  
Vol 823 ◽  
pp. 9-12 ◽  
Author(s):  
Xiang Li Zhao ◽  
Li Xin Gao ◽  
Jian Feng Li

Aiming at the difficulties in diagnosis for low speed and heavy duty components of furnace top gearbox, an indirect diagnosis method for vibration signal is proposed in this subject, through which the vibration features of high speed rotating parts that near input end of gearbox is effectively utilized and analyzed for fault judgment of low speed components and a useful methodology is also given for fault diagnosis of both furnace top gearbox and low speed and heavy duty equipments. Since the identification for all faults and accurate fault location cannot be realized by using the existing diagnosis methods, a method of vibration analysis for fault diagnosis to furnace top gearbox is presented to realize accurate judgment and fault location. It can be found out that if near the basic frequency and double frequency of characteristic frequency of high speed components of upper gearbox, there were frequency spacing of fault characteristic frequency of low speed components of subordinate transmission chain apparently showing up, which also happened in low frequency range after demodulation, then the fault location can be determined to the low speed parts of subordinate transmission chain.


1900 ◽  
Vol 50 (1289supp) ◽  
pp. 20665-20668
Author(s):  
Arthur Herschmann
Keyword(s):  

1980 ◽  
Vol 41 (5) ◽  
pp. 558-566
Author(s):  
O. Yu Elagina ◽  
◽  
D.O. Kolbas ◽  
A.G. Buklakov ◽  
N. Derr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document