Analysis of Adaptability of Porous Asphalt Mixture to Heavy-Duty Asphalt Pavements

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Haoyang Wang
2021 ◽  
Author(s):  
Ahmet Buğra İbiş ◽  
Burak Şengöz ◽  
Ali Topal ◽  
Derya Kaya Özdemir

Porous asphalt pavement is defined as an asphalt concrete that is designed with open gradation aggregate which helps in removing the water with an air void content of about 20% by creating drainage channels. Open gradation consists of large amounts of coarse aggregates and small amounts of fine aggregates. The water is drained due to this hollow structure, this air void content in the porous asphalt mixture which inevitably decreases with time is the main parameter affecting the service life as well as the structural and functional performance. Moreover, the reduction in air void content is one of the main reasons for the loss of permeability in porous asphalt pavements and this lead to the increase in pavement density under heavy traffic conditions. Each country has its own technical asphalt specification involving the required compaction energy and temperature. This study involves the effect of compaction temperatures and numbers on the air void in porous asphalt pavements prepared with 50/70 penetration grade bitumen. As a result of experimental studies, it has been observed that the reduced compaction temperature and the number of compaction (energy) increase the air void level in porous asphalt pavements.


Author(s):  
Ruxin Jing ◽  
Aikaterini Varveri ◽  
Xueyan Liu ◽  
Athanasios Scarpas ◽  
Sandra Erkens

Oxidative aging takes place in bituminous materials during the construction and service life of asphalt pavements and has a significant effect on their performance. In this study, porous asphalt cores were obtained from field test sections each year from 2014 to 2017. The evolution of the properties of the field cores and the recovered bitumen with time was investigated. Cyclic indirect tensile tests were performed to determine changes in the mechanical behavior of porous asphalt due to aging. Additionally, bitumen was extracted and recovered from 13 mm slices along the depth of the cores. The rheological and chemical properties of the recovered bitumen, as well as that of original bitumen aged in standard short- and long-term aging protocols, were investigated by means of dynamic shear rheometer and Fourier transform infrared spectrometer. The results show that the degree of aging is spatially dependent, resulting in a stiffness gradient within the asphalt layer. Moreover, the results demonstrate a weak relation between field aging and the standard laboratory aging protocols.


2021 ◽  
Vol 27 (3) ◽  
pp. 113-129
Author(s):  
Ghaidaa Abdl Wahab Majeed ◽  
Saad Issa Sarsam

Porous asphalt paving is a modern design method that differs from the usual asphalt pavements' traditional designs. The difference is that the design structure of porous pavements allows the free passage of fluids through their layers, which controls or reduces the amount of runoff or water accumulated in the area by allowing the flow of rain and surface runoff.  The cross-structure of this type of paving works as a suitable method for managing rainwater and representing groundwater recharge. The overall benefits of porous asphalt pavements include environmental services and safety features, including controlling the build-up of contaminated metals on the road surface, rainwater management, resistance to slipping accidents, reduced splashing, and spraying pedestrians and drivers. In this study, the porous mixture's volumetric and physical properties were tested, and the use of carbon fibers as a type of mixture improver. The results were compared after performing the following steps: Selecting the best gradient for the porous asphalt mixture by selecting the largest proportion of air voids from three gradations group according to specifications (ASTM 7064), then choosing the optimum asphalt ratio according to the standard specifications, which are the value of drain down % and the Cantabro abrasion loss % value, as well as the ratio of air voids. After obtaining the optimum asphalt ratio, samples of the asphalt mixture were prepared. Carbon fibers were added to it at a rate of (0.3%) by weight of the total mix and a length of (2 cm) and prepared samples without additives. They were tested by a Marshall device to calculate the stability and flow value and show the effects of fibers on porous asphalt concrete properties. An increase in the stability value and a decrease in the flow and reduction in the drain down rate during exposure to high temperature were observed for the samples containing carbon fibers, by 48.8%, 44%, and 72%, respectively


2021 ◽  
Vol 11 (9) ◽  
pp. 4029
Author(s):  
Jian Wang ◽  
Pui-Lam Ng ◽  
Yuhua Gong ◽  
Han Su ◽  
Jinsheng Du

Porous asphalt mixture can be used as a road surface paving material with the remarkable advantage to prevent water accumulation and ponding. However, the performance of porous asphalt mixture in low temperature environment has not been thoroughly investigated, and this forms the subject of research in the present study. The mineral aggregate gradation of porous asphalt mixture was designed based on Bailey method, and the low temperature performance of porous asphalt mixture was studied by means of the low temperature bending test. The factors affecting the low temperature performance of porous asphalt mixture were analyzed through the orthogonal experimental design method, and the effects of porosity, modifier content, aging condition, and test temperature on the low temperature performance of porous asphalt mixture were evaluated. The results showed that the modifier content was the most important factor affecting the low temperature performance of porous asphalt mixture, followed by the test temperature, while the porosity and the aging condition were the least. Among the three performance evaluation indicators, namely the flexural tensile strength, maximum bending strain, and bending stiffness modulus, the maximum bending strain had the highest sensitivity to the porosity. It can be seen from the single factor influence test of porosity that there existed an approximately linear relationship between the maximum bending strain and the porosity of porous asphalt mixture, and the maximum bending strain decreased with increasing porosity. Furthermore, in order to ensure the good working performance of porous asphalt mixture in low temperature environment, the porosity should also satisfy the required limits of the maximum bending strain.


2011 ◽  
Vol 415-417 ◽  
pp. 1531-1536
Author(s):  
Fu Ming Liu ◽  
Duan Yi Wang

This paper presents the results of laboratory and performance tests for an asphalt treated base (ATB) and mixes developed in this study for perpetual asphalt pavements. Laboratory tests for the mixes included moisture susceptibility, wheel tracking and fatigue tests. The results of performance test indicated that the resistances of the high content binder ATB against moisture and fatigue damage were better than those of the lower one. It was also found from the full scale test sections that the tensile strain values at the bottom of the asphalt layer for the ATB sections were low when the asphalt layer thicknesses of the ATB sections were not thicker than those of the conventional sections. All the tensile strain values measured from the ATB sections were within the fatigue endurance limit of 70 microstrain which is the fatigue criterion of a perpetual asphalt pavement.


2019 ◽  
Vol 15 (1) ◽  
pp. 206-226 ◽  
Author(s):  
Kabiru Abdullahi Ahmad ◽  
Norhidayah Abdul Hassan ◽  
Mohd Ezree Abdullah ◽  
Munder A.M. Bilema ◽  
Nura Usman ◽  
...  

Purpose In order to fully understand the properties of porous asphalt, investigation should be conducted from different point of views. This is from the fact that porous asphalt mixture designed with the same aggregate gradation and air void content can give different infiltration rate due to the different formation of the internal structure. Therefore, the purpose of this paper is to investigate the micro-structural properties and functional performance of porous asphalt simultaneously. Design/methodology/approach The aim is to develop imaging techniques to process and analyze the internal structure of porous asphalt mixture. A few parameters were established to analyze the air void properties and aggregate interlock within the gyratory compacted samples captured using a non-destructive scanning technique of X-ray computed tomography (CT) throughout the samples. The results were then compared with the functional performance in terms of permeability. Four aggregate gradations used in different countries, i.e. Malaysia, Australia, the USA and Singapore. The samples were tested for resilient modulus and permeability. Quantitative analysis of the microstructure was used to establish the relationships between the air void properties and aggregate interlock and the resilient modulus and permeability. Findings Based on the results, it was found that the micro-structural properties investigated have successfully described the internal structure formation and they reflect the results of resilient modulus and permeability. In addition, the imaging technique which includes the image processing and image analysis for internal structure quantification seems to be very useful and perform well with the X-ray CT images based on the reliable results obtained from the analysis. Research limitations/implications In this study, attention was limited to the study of internal structure of porous asphalt samples prepared in the laboratory using X-ray CT but can also be used to assess the quality of finished asphalt pavements by taking core samples for quantitative and qualitative analysis. The use of CT for material characterization presents a lot of possibilities in the future of asphalt concrete mix design. Originality/value Based on the validation process which includes comparisons between the values obtained from the image analysis and those from the performance test and it was found that the developed procedure satisfactorily assesses the air voids distribution and the aggregate interlock for this reason, it can be used.


Sign in / Sign up

Export Citation Format

Share Document