Renewable diesel as fossil fuel substitution in Malaysia: A review

Fuel ◽  
2022 ◽  
Vol 314 ◽  
pp. 123137
Author(s):  
Shir Reen Chia ◽  
Saifuddin Nomanbhay ◽  
Mei Yin Ong ◽  
Abd Halim Bin Shamsuddin ◽  
Kit Wayne Chew ◽  
...  
2014 ◽  
Vol 10 (1) ◽  
pp. 35-51
Author(s):  
I. Czupy

Concerns about climate change and fossil fuel shortages are encouraging interest in stumps, as alternative energy sources. Stumps are an almost unused resource in the context of bio fuels. Stump harvesting signifies an intensification of forest management compared with conventional stem-only or above-ground biomass-only harvesting. There are many benefits of stump harvesting. These include: the production of wood fuel, fossil fuel substitution, and improved soil preparation.Removing tree trunks in Hungary has been going on according to the principle of stump extraction, which means stumps are removed by grabbing technology. Experiments have been carried out to reduce the extraction force. In the Great Hungarian Lowland, where large areas require the operation implementation, stump extraction is done by special, hydraulic driven baggers equipped with a special bucket. During operation of the equipment, we carried out measurements of the extraction force and the time requirement. The experiments are designed to carry out the measurements with different soils and different tree species. According to our proposal the suitable force and torque required to remove stumps can be significantly reduced if before the lifting the soil — root connection is loosened. One of the possible ways to implement this task is the use of vibration. Since relatively great vibration power and wide domain of frequency are necessary, therefore we prepared the loosening machinery elements of alternating-current hydraulics system. Based on constructions variants we created a tractor-mounted experimental alternating-current hydraulic stump-loosening machine. It was designed with the ability to produce horizontal vibration in order to loosen stumps.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Marcos L. Corazza ◽  
Julia Trancoso

Abstract The search for sustainable ideas has gained prominence in recent decades at all levels of society since it has become imperative an economic, social, and environmental development in an integrated manner. In this context, biorefineries are currently present as the technology that best covers all these parameters, as they add the benefits of waste reuse, energy cogeneration, and fossil fuel substitution. Thus, the study of the various applicable biological matrices and exploring the technical capabilities of these processes become highly attractive. Thermodynamic modeling acts in this scenario as a fundamental tool for phase behavior predictions in process modeling, design, and optimization. Thus, this work aimed to systematize, using the PRISMA statement for systematic reviews, the information published between 2010 and 2020 on phase equilibria modeling in systems related to biorefineries to organize what is already known about the subject. As a result, 236 papers were categorized in terms of the year, country, type of phase equilibria, and thermodynamic model used. Also, the phase behavior predictions of different thermodynamic models under the same process conditions were qualitatively compared, establishing PC-SAFT as the model that best represents the great diversity of interest systems for biorefineries in a wide range of conditions.


Author(s):  
Sudheer Awasthi ◽  
Naveen Adhikari

In spite of huge hydro-electricity potential, Nepal still relies on fossil fuel to meet its energy demand. However, as the pace of hydroelectricity generation gets momentum in recent years, there are concerns about the excess supply of hydroelectricity in the domestic market in the near future. In this context, this paper examines the potential substitution of conventional fuels by the hydroelectricity in Nepal. Using translog production function, this paper calculates the elasticity of substitution between hydroelectricity, coal, gas, petrol, diesel, and kerosene for the period of 1980 to 2016. Our findings suggest that all the fuels except kerosene are positively associated with economic growth during the study period, and the output elasticity of hydroelectricity is found be largest among these sources of energy. The findings also suggest that hydroelectricity has the potential for substitute other conventional fuels if the share of hydroelectricity is increased in the energy consumption composition. While there is not a huge variation in the elasticity of substitution between hydroelectricity and other fuels, the hydroelectricity has relatively higher potential to substitute coal followed by petrol, diesel, kerosene, and gas. The findings of the paper are supportive of the hypothesis that Nepal could potentially absorb the hydroelectricity generated in near future if incentive mechanisms are initiated that allow substitution of conventional fossil fuels by the hydroelectricity.


2020 ◽  
Vol 366 ◽  
pp. 110742
Author(s):  
Efstathios E. Michaelides ◽  
Dimitrios N. Michaelides

2015 ◽  
Vol 12 (10) ◽  
pp. 8035-8084 ◽  
Author(s):  
S. Sabbatini ◽  
N. Arriga ◽  
T. Bertolini ◽  
S. Castaldi ◽  
T. Chiti ◽  
...  

Abstract. The production of bioenergy in Europe is one of the strategies conceived to reduce greenhouse gas (GHG) emissions. The suitability of the land use change from a cropland (REF site) to a short rotation coppice plantation of hybrid poplar (SRC site) was investigated by comparing the GHG budgets of these two systems over 24 months in Viterbo, Italy. Eddy covariance measurements were carried out to quantify the net ecosystem exchange of CO2 (FCO2), whereas chambers were used to measure N2O and CH4 emissions from soil. Soil organic carbon (SOC) of an older poplar plantation was used to estimate via a regression the SOC loss due to SRC establishment. Emissions from tractors and from production and transport of agricultural inputs (FMAN) were modelled and GHG emission offset due to fossil fuel substitution was credited to the SRC site considering the C intensity of natural gas. Emissions due to the use of the biomass (FEXP) were also considered. The suitability was finally assessed comparing the GHG budgets of the two sites. FCO2 was the higher flux in the SRC site (−3512 ± 224 g CO2 eq m−2 in two years), while in the REF site it was −1838 ± 107 g CO2 m−2 in two years. FEXP was equal to 1858 ± 240 g CO2 m−2 in 24 months in the REF site, thus basically compensating FCO2, while it was 1118 ± 521 g CO2 eq m−2 in 24 months in the SRC site. This latter could offset −379.7 ± 175.1 g CO2 eq m−2 from fossil fuel displacement. Soil CH4 and N2O fluxes were negligible. FMAN weighed 2 and 4% in the GHG budgets of SRC and REF sites respectively, while the SOC loss weighed 455 ± 524 g CO2 m−2 in two years. Overall, the REF site was close to neutrality in a GHG perspective (156 ± 264 g CO2 eq m−2), while the SRC site was a net sink of −2202 ± 792 g CO2 eq m−2. In conclusion the experiment led to a positive evaluation of the conversion of cropland to bioenergy SRC from a GHG viewpoint.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 786 ◽  
Author(s):  
Nurul Husna Che Hamzah ◽  
Nozieana Khairuddin ◽  
Bazlul Mobin Siddique ◽  
Mohd Ali Hassan

Fluctuation in fossil fuel prices and the increasing awareness of environmental degradation have prompted the search for alternatives from renewable energy sources. Biodiesel is the most efficient alternative to fossil fuel substitution because it can be properly modified for current diesel engines. It is a vegetable oil-based fuel with similar properties to petroleum diesel. Generally, biodiesel is a non-toxic, biodegradable, and highly efficient alternative for fossil fuel substitution. In Malaysia, oil palm is considered as the most valuable commodity crop and gives a high economic return to the country. However, the ethical challenge of food or fuel makes palm oil not an ideal feedstock for biodiesel production. Therefore, attention is shifted to non-edible feedstock like Jatropha curcas Linnaeus (Jatropha curcas L.). It is an inedible oil-bearing crop that can be processed into biodiesel. It has a high-seed yield that could be continually produced for up to 50 years. Furthermore, its utilization will have zero impact on food sources since the oil is poisonous for human and animal consumption. However, Jatropha biodiesel is still in its preliminary phase compared to palm oil-based biodiesel in Malaysia due to a lack of research and development. Therefore, this paper emphasizes the potential of Jatropha curcas as an eco-friendly biodiesel feedstock to promote socio-economic development and meet significantly growing energy demands even though the challenges for its implementation as a national biodiesel program might be longer.


Sign in / Sign up

Export Citation Format

Share Document