Effect of the number of graded layers on the microstructure and properties of SiC/C functionally graded materials

2007 ◽  
Vol 82 (4) ◽  
pp. 331-337 ◽  
Author(s):  
Guobing Zhang ◽  
Quangui Guo ◽  
Xiutao Li ◽  
Hua Zhang ◽  
Yan Song ◽  
...  
2015 ◽  
Vol 55 (6) ◽  
pp. 388 ◽  
Author(s):  
Jakub Horník ◽  
Stanislav Krum ◽  
David Tondl ◽  
Maxim Puchnin ◽  
Pavel Sachr ◽  
...  

The paper deals with evaluation of single and multilayer layer PVD coatings based on Cr and Ti widely used in tool application. Additionally, W and WN based coating which are not so widespread were designed and deposited as functionally graded material. The coatings properties were evaluated from the point of view of hardness and adhesion. The hardness measuring was carried out using nanoindentation method. The scratch test was performed to test adhesion. Moreover, the presence of metallic interlayer in functionally graded materials further increases the coating adhesion by gradually approaching its composition to the substrate. Coatings consisting of W and WN have showed very good adhesion. With regard to the results of the scratch test, the multilayer coatings of CrN, TiN and WN have increased adhesion and can be assumed to have their protective function improved. Results will be appliedin development of functionally graded layers for functionally graded materials.


2013 ◽  
Vol 683 ◽  
pp. 17-20
Author(s):  
Hai Ting Xia ◽  
Rong Xin Guo ◽  
Feng Yan ◽  
Hai Yu ◽  
Yu Bo Zhang

In this paper, the fracture process of WCp/Cu functionally graded materials(FGMs) was investigated. The used materials were fabricated by powder metallurgy using tungsten carbide(WC) particles and copper(Cu) matrix, and had functionally graded layers. In order to investigate the fracture process of the FGM, three-point-bending tests of rectangular specimens were carried out. From the results, it can be seen that the bending performance of FGM structures with increasing WC content from head layer to the bottom layer excels that of FGM structures with decreasing WC content in three-point-bending tests.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Awham Salman ◽  
Nada Al-Ghaban ◽  
Mohammed Eesa ◽  
Alaa Atiyah ◽  
Saad Farid

Electrophoretic deposition (EPD) technique is used to prepare zirconia–alumina composite layers based on the principle of functionally graded materials (FGM). The FGM were prepared with five layers. The outer layer was composed of pure α-alumina to promote biocompatibility while the inner layer was stabilised zirconia (3Y-TZP), to benefit from its tough properties. The intermediate layers were stepwise graded layers. The stability of the EPD suspensions was the main challenge during the preparation steps. Due to availability and low cost, alcoholic solutions of polyethylene glycol (PEG) and toluene were used to control conductivity, dielectric constant and the viscosity of the suspension. The appropriately applied potential, (ζ), for the deposition of each layer, was achieved via gradation of the applied voltage, which was to optimise the packing of each layer and avoid cracking after sintering at 1500 °C. The cylindrical-shaped green specimens were obtained via deposition on graphite electrodes. A small amount of acetic acid was added during the deposition of the final outer alumina layer to introduce porosity, via the bubbling of acetic acid, to encourage osseointegration. The sintered specimens were implanted in rabbit tibial bone. In vivo histological tests showed the successful osseointegration of the implants to the rabbit bone.


Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

Sign in / Sign up

Export Citation Format

Share Document