scholarly journals MULTILAYER COATINGS Ti/TiN, Cr/CrN AND W/WN DEPOSITED BY MAGNETRON SPUTTERING FOR IMPROVEMENT OF ADHESION TO BASE MATERIALS

2015 ◽  
Vol 55 (6) ◽  
pp. 388 ◽  
Author(s):  
Jakub Horník ◽  
Stanislav Krum ◽  
David Tondl ◽  
Maxim Puchnin ◽  
Pavel Sachr ◽  
...  

The paper deals with evaluation of single and multilayer layer PVD coatings based on Cr and Ti widely used in tool application. Additionally, W and WN based coating which are not so widespread were designed and deposited as functionally graded material. The coatings properties were evaluated from the point of view of hardness and adhesion. The hardness measuring was carried out using nanoindentation method. The scratch test was performed to test adhesion. Moreover, the presence of metallic interlayer in functionally graded materials further increases the coating adhesion by gradually approaching its composition to the substrate. Coatings consisting of W and WN have showed very good adhesion. With regard to the results of the scratch test, the multilayer coatings of CrN, TiN and WN have increased adhesion and can be assumed to have their protective function improved. Results will be appliedin development of functionally graded layers for functionally graded materials.

2003 ◽  
Vol 70 (3) ◽  
pp. 359-363 ◽  
Author(s):  
S. Mukherjee ◽  
Glaucio H. Paulino

Paulino and Jin [Paulino, G. H., and Jin, Z.-H., 2001, “Correspondence Principle in Viscoelastic Functionally Graded Materials,” ASME J. Appl. Mech., 68, pp. 129–132], have recently shown that the viscoelastic correspondence principle remains valid for a linearly isotropic viscoelastic functionally graded material with separable relaxation (or creep) functions in space and time. This paper revisits this issue by addressing some subtle points regarding this result and examines the reasons behind the success or failure of the correspondence principle for viscoelastic functionally graded materials. For the inseparable class of nonhomogeneous materials, the correspondence principle fails because of an inconsistency between the replacements of the moduli and of their derivatives. A simple but informative one-dimensional example, involving an exponentially graded material, is used to further clarify these reasons.


2008 ◽  
Vol 587-588 ◽  
pp. 400-404
Author(s):  
P. Pinto ◽  
L. Mazare ◽  
Delfim Soares ◽  
F.S. Silva

The Incremental Melting and Solidification Process (IMSP) is a relatively new field for material processing for the production of functionally graded materials. In this process a controlled liquid bath is maintained at the top of the component where new materials are added changing the components composition. Thus, a functionally graded material is obtained with a varying composition along one direction of the component. This paper deals with the influence of one of the process parameters, namely displacement rates between heating coil and mould, in order to evaluate its influence on both metallurgical and mechanical properties of different Al-Si alloys. Hardness and phase distribution, along the main castings axis, were measured. To better assess and characterize the process, two different Al-Si alloys with and without variation of chemical composition along the specimen were analysed. Results demonstrate that a gradual variation of metallurgical and mechanical properties along the component is obtained. It is also shown that Al-Si functionally graded materials can be produced by the incremental melting and solidification process. Results show that the displacement rate is very important on metallurgical and mechanical properties of the obtained alloy.


Author(s):  
Yuen-Shan Leung ◽  
Huachao Mao ◽  
Yong Chen

Functionally graded materials (FGM) possess superior properties of multiple materials due to the continuous transitions of these materials. Recent progresses in multi-material additive manufacturing (AM) processes enable the creation of arbitrary material composition, which significantly enlarges the manufacturing capability of FGMs. At the same time, the fabrication capability also introduces new challenges for the design of FGMs. A critical issue is to create the continuous material distribution under the fabrication constraints of multi-material AM processes. Using voxels to approximate gradient material distribution could be one plausible way for additive manufacturing. However, current FGM design methods are non-additive-manufacturing-oriented and unpredictable. For instance, some designs require a vast number of materials to achieve continuous transitions; however, the material choices that are available in a multi-material AM machine are rather limited. Other designs control the volume fraction of two materials to achieve gradual transition; however, such transition cannot be functionally guaranteed. To address these issues, we present a design and fabrication framework for FGMs that can efficiently and effectively generate printable and predictable FGM structures. We adopt a data-driven approach to approximate the behavior of FGM using two base materials. A digital material library is constructed with different combinations of the base materials, and their mechanical properties are extracted by Finite Element Analysis (FEA). The mechanical properties are then used for the conversion process between the FGM and the dual material structure such that similar behavior is guaranteed. An error diffusion algorithm is further developed to minimize the approximation error. Simulation results on four test cases show that our approach is robust and accurate, and the framework can successfully design and fabricate such FGM structures.


Author(s):  
С. И. Жаворонок ◽  

A brief review of the modern state-of-the art and tendencies of further development of various methods of solution of wave dispersion problems in heterogeneous functionally graded elastic waveguides is presented. Main types of functionally graded materials and structures, including gradient thon-walled structures, and their main engineering applications is discussed. The main difficulties of modelling of the stress-strain state of functionally graded shells and plates are pointed, as well as the possible ways to overcome such difficulties. The main theoretical bases of definition of effective constitutive constants of functionally graded materials and their possible estimates used in the practice are considered. Main dependencies of the effective constitutive constants of a functionally graded material on coordinates used for the mathematical modelling of the dynamics are also shown. The statement of the dynamics problem for a functionally graded waveguide and the appropriate statement of the normal wave dispersion problem are pointed. The presented Part I of the review consider some analytical methods of solution of dispersion problems, mainly the matrix ones based on the formulation of the steady dynamics problem in the image space as a first-order ordinary differential equations system. The state vectors corresponding to the useful Cauchy and Stroh formalisms are introduced, and the appropriate governing equations and the boundary conditions on waveguide’s faces are presented. Classical methods for solving the steady dynamics problem for a laminated waveguide are briefly described, which could be a basis for the further approximation of a functionally graded material by a system of layers with constant properties, i.e. the transfer matrix method, its main modifications developed to ensure the stability of calculations, and the global matrix method. Then, the intensively developed last 15 years reverberation matrix method, stiffness matrix method, and the Peano series method are discussed. Some key solutions of the wave dispersion problems for heterogeneous layers are presented; such solutions improve the efficiency of approximation of a functionally graded structure by a laminated one. The implicit solution of the general problem of steady dynamics for a waveguide with arbitrary gradation law is shown. The key features of the discussed matrix methods are pointed briefly as well as their main drawbacks. In the Part II, the main attention will be paid to methods of semi-analytical solution of dispersion problems based on the approximation of a waveguide by an equivalent system with a finite number of degrees of freedom: power series, generalized Fourier series, semi-analytical finite elements. spectral elements, as well as methods based on various theories of plates and shells.


2013 ◽  
Vol 683 ◽  
pp. 17-20
Author(s):  
Hai Ting Xia ◽  
Rong Xin Guo ◽  
Feng Yan ◽  
Hai Yu ◽  
Yu Bo Zhang

In this paper, the fracture process of WCp/Cu functionally graded materials(FGMs) was investigated. The used materials were fabricated by powder metallurgy using tungsten carbide(WC) particles and copper(Cu) matrix, and had functionally graded layers. In order to investigate the fracture process of the FGM, three-point-bending tests of rectangular specimens were carried out. From the results, it can be seen that the bending performance of FGM structures with increasing WC content from head layer to the bottom layer excels that of FGM structures with decreasing WC content in three-point-bending tests.


2007 ◽  
Vol 82 (4) ◽  
pp. 331-337 ◽  
Author(s):  
Guobing Zhang ◽  
Quangui Guo ◽  
Xiutao Li ◽  
Hua Zhang ◽  
Yan Song ◽  
...  

2016 ◽  
Vol 64 (1) ◽  
pp. 151-160 ◽  
Author(s):  
M. Chmielewski ◽  
K. Pietrzak

Abstract Functionally graded materials (FGMs) belong to a new, continuously developing group of materials, finding application in various branches of industry. The idea of freely designing their construction profile, restricted only by the available manufacturing techniques, enables obtaining materials with composition and structure gradients having unprecedented properties. In this paper, selected results of works carried out by the authors and relating to the application of the developed metal-ceramic composites were presented in order to manufacture functionally graded materials for target purposes. Gradient structures with various construction profiles that can play different roles were produced on the basis on the following material pairs: Cr-Al2O3, NiAl-Al2O3 and Cu-AlN. Manufacturing conditions, microstructure characteristics and selected properties, crucial from the point of view of future applications, were presented.


Author(s):  
Cynthia M. Chan ◽  
Andrew Ruys

Functionally graded materials (FGMs) are composite materials in which the properties are varied continuously from one face to the other via a compositional gradient. Functionally graded structures can be found in nature as evident in the cross-sections of bone, teeth and many plant stems, for example bamboo. Initially conceived for the purpose of thermal barrier coatings on spaceplanes, FGMs are finding more applications in other fields such as in polymers, biomedical and semiconductors. In this review, we take a look at two kinds of ceramics, carbon-carbon and fused silica, their properties and processing methods, as well as the possibility of incorporating them in a functionally graded material for use in high-temperature applications. Both carbon and fused silica have similarly low thermal expansion coefficients which will (1) allow the degree of thermal mismatch between the graded layers to be minimized and; (2) reduce the thermomechanical shock that will occur in the presence of a steep temperature gradient.


2005 ◽  
Vol 492-493 ◽  
pp. 403-408 ◽  
Author(s):  
Jeong Ho Kim ◽  
Glaucio H. Paulino

This paper revisits the interaction integral method to evaluate both the mixed-mode stress intensity factors and the T-stress in functionally graded materials under mechanical loading. A nonequilibrium formulation is developed in an equivalent domain integral form, which is naturally suitable to the finite element method. Graded material properties are integrated into the element stiffness matrix using the generalized isoparametric formulation. The type of material gradation considered includes continuum functions, such as an exponential function, but the present formulation can be readily extended to micromechanical models. This paper presents a fracture problem with an inclined center crack in a plate and assesses the accuracy of the present method compared with available semi-analytical solutions.


Sign in / Sign up

Export Citation Format

Share Document