Optimization of mass-production conditions for tritium breeder pebbles based on slurry droplet wetting method

2016 ◽  
Vol 109-111 ◽  
pp. 443-447 ◽  
Author(s):  
Yi-Hyun Park ◽  
Kyung-Mi Min ◽  
Mu-Young Ahn ◽  
Seungyon Cho ◽  
Young-Min Lee ◽  
...  
2012 ◽  
Vol 12 (2) ◽  
pp. 1260-1264 ◽  
Author(s):  
Dongyoon Khim ◽  
Kang-Jun Baeg ◽  
Yong-Young Noh ◽  
Dong-Yu Kim

Author(s):  
D. P. Jablonowski ◽  
D. D. Padgette ◽  
J. R. Merten

Author(s):  
I. C. Dima

Polyservicing the workplaces takes into account the cycle of processing the benchmarks by machine tools and their features and implies a thorough analysis of the technical, organisational, and economic aspects. It is thus intended to efficiently use the machines and machine tools including the worker’s working time. Grouping the processing operations by machine tools will be done depending on the technological structure of each operation, given the use index of the machines, the effective use index of labour, the structure and duration of the operations necessary to make the product, the type of the machine tools used. Polyservicing the machine-tools is featured by a series of parameters: the duration of the working cycle of a machine, the duration of the polyservicing cycle, optimal number of machines that can be services, the coefficient to use the performer’s working time, etc. Combining the operations to be done on various machine tools is based on the types of technological processes and is done separately for manufacturing unique products, serial production, and mass production. Establishing the optimal production conditions for polyservicing can be done by using the theory of “waiting queues” and “Markov chain,” which is based on three elements, namely: input into the process, the servicing mechanism, and the type and way of servicing. Optimising the polyservice of machines can be done using the “Takacs and Runnenburg model,” which basically solves the issue of the general distribution of servicing times and the “method of the mechanisation coefficient,” which takes into account the influence of cost on the number of polyserviced machines.


2021 ◽  
Vol 36 (4) ◽  
pp. 549-559
Author(s):  
Dan LIU ◽  
◽  
Yi LIU ◽  
Zhong-hao HUANG ◽  
Qing-you WU ◽  
...  

2019 ◽  
Vol 42 ◽  
Author(s):  
Joseph A. Tainter ◽  
Temis G. Taylor

Abstract We question Baumard's underlying assumption that humans have a propensity to innovate. Affordable transportation and energy underpinned the Industrial Revolution, making mass production/consumption possible. Although we cannot accept Baumard's thesis on the Industrial Revolution, it may help explain why complexity and innovation increase rapidly in the context of abundant energy.


1988 ◽  
Vol 102 ◽  
pp. 129-132
Author(s):  
K.L. Baluja ◽  
K. Butler ◽  
J. Le Bourlot ◽  
C.J. Zeippen

SummaryUsing sophisticated computer programs and elaborate physical models, accurate radiative and collisional atomic data of astrophysical interest have been or are being calculated. The cases treated include radiative transitions between bound states in the 2p4and 2s2p5configurations of many ions in the oxygen isoelectronic sequence, the photoionisation of the ground state of neutral iron, the electron impact excitation of the fine-structure forbidden transitions within the 3p3ground configuration of CℓIII, Ar IV and K V, and the mass-production of radiative data for ions in the oxygen and fluorine isoelectronic sequences, as part of the international Opacity Project.


Author(s):  
K. Yoshida ◽  
F. Murata ◽  
S. Ohno ◽  
T. Nagata

IntroductionSeveral methods of mounting emulsion for radioautography at the electron microscopic level have been reported. From the viewpoint of quantitative radioautography, however, there are many critical problems in the procedure to produce radioautographs. For example, it is necessary to apply and develop emulsions in several experimental groups under an identical condition. Moreover, it is necessary to treat a lot of grids at the same time in the dark room for statistical analysis. Since the complicated process and technical difficulties in these procedures are inadequate to conduct a quantitative analysis of many radioautographs at once, many factors may bring about unexpected results. In order to improve these complicated procedures, a simplified dropping method for mass production of radioautographs under an identical condition was previously reported. However, this procedure was not completely satisfactory from the viewpoint of emulsion homogeneity. This paper reports another improved procedure employing wire loops.


Sign in / Sign up

Export Citation Format

Share Document