A fractured roman glass block altered for 1800 years in seawater: Analogy with nuclear waste glass in a deep geological repository

2008 ◽  
Vol 72 (22) ◽  
pp. 5372-5385 ◽  
Author(s):  
Aurelie Verney-Carron ◽  
Stephane Gin ◽  
Guy Libourel
1999 ◽  
Vol 556 ◽  
Author(s):  
Yves Minet ◽  
Étienne Vernaz

AbstractSilica additives have been proposed to protect nuclear waste glass packages in deep geological repositories by presaturating silicon adsorption sites* in the media surrounding the package (engineered barrier, canister and overpack corrosion products). The durability of such additives was estimated using a one-dimensional dissolution-transport model developed at the CEA's Rhône Valley Research Center for the French reference glass in typical disposal sites. The silica additive would be placed between the wasteform and the overpack and thus dissolved before the waste glass. Its lifetime is proportional to Madd2(where Madd is the added silica mass) up to a critical value Mcrit at which it increases considerably (from 103 or 104 to 108 years) due to saturation of the adsorption sites. Excess silica consumption is then limited by the typically very low (3 × 10−3 l·m−2y−1 ) groundwater flow in the geological site. After consumption of the added silica, the evolution of the altered waste glass fraction is comparable to the evolution without added silica if Madd « Mcrit, but much lower if Madd ≈ Mcrit or Madd > Mcrit. These findings were confirmed by some experimental evidence, and establish that a few kilograms of added silica for a 400 kg package can considerably enhance the waste glass durability.


2008 ◽  
Author(s):  
Sergey Stefanovsky ◽  
Alexander Barinov ◽  
Galina Varlakova ◽  
Irene Startseva ◽  
Michael I. Ojovan

2014 ◽  
Vol 7 ◽  
pp. 3-9 ◽  
Author(s):  
Étienne Vernaz ◽  
Jérôme Bruezière

1993 ◽  
Vol 333 ◽  
Author(s):  
A. Abdelouas ◽  
J. L. Crovisier ◽  
W. Lutze ◽  
R. Müller ◽  
W. Bernotat

ABSTRACTThe R7T7 and synthetic basaltic glasses were submitted to corrosion in a saline MgCl2dominated solution at 190°C. For both glasses, the early alteration product is a hydrotalcite-like compound in which HPO42-, SO4-2and Cl-substitutes to CO32. The measured d003spacing is 7.68 Å for the hydrotalcite formed from R7T7 glass and 7.62 Å for the hydrotalcite formed from basaltic glass which reflect the high aluminium content. Chemical microanalyses show that the hydrotalcite is subsequently covered by a silica-rich gel which evolves into saponite after few months.


1992 ◽  
Vol 294 ◽  
Author(s):  
X. Feng ◽  
J. K. Bates ◽  
C. R. Bradley ◽  
E. C. Buck

ABSTRACTStatic tests at SA/V (ratio of surface area of glass to solution volume) 20,000 m−1 on SRL 200 glass compositions show that, at long test periods, the simulated nuclear waste glass (nonradioactive) leaches faster than the corresponding radioactive glass by a factor of about 40, although comparative tests, done through 560 days, at lower SA/V, 2000 m−1, indicate little difference in the leach behavior of the two types of glasses. The similarity in leach behavior between radioactive and simulated glasses at SAN of 2000 m−1 or lower is also observed for SRL 165/42 and 131/11 compositions. The accelerated glass reaction with the simulated glass 200S is associated with the formation of crystalline phases such as clinoptilolite (or potassium feldspar), and a pH excursion. The radiation field generated by the fully radioactive glass reduces the solution pH. This lower pH, in turn, may retard the onset of increased reaction rate. The radiation field generated by the radioactive glasses does not directly affect the stability of the glass surface alteration layer under those conditions where the radioactive and simulated glasses react at the same rate. These results suggest that the fully radioactive nuclear waste glass 200R may maintain a much lower leach rate than the simulated 200S, if the lower pH in the 200R leachate can be sustained. Meaningful comparison tests between radioactive and simulated nuclear waste glasses should include long-term and high SA/V tests.


Sign in / Sign up

Export Citation Format

Share Document