Synthetic fluid inclusions XXIII. Effect of temperature and fluid composition on rates of serpentinization of olivine

2021 ◽  
Vol 292 ◽  
pp. 285-308
Author(s):  
H.M. Lamadrid ◽  
Z. Zajacz ◽  
F. Klein ◽  
R.J. Bodnar
2020 ◽  
Vol 105 (8) ◽  
pp. 1126-1139
Author(s):  
Dongmei Qi ◽  
Harald Behrens ◽  
Roman Botcharnikov ◽  
Insa Derrey ◽  
Francois Holtz ◽  
...  

Abstract Transport and deposition of copper in the Earth's crust are mainly controlled by the solubility of Cu-bearing phases and the speciation of Cu in magmatic-hydrothermal fluids. To improve our understanding of copper mobilization by hydrothermal fluids, we conducted an experimental study on the interaction between Cu-bearing phases (metallic copper, Cu2O, CuCl) and aqueous chloride solutions (H2O ± NaCl ± HCl; with Cl concentrations of 0 to 4.3 mol kg-1). The experiments were run in rapid heat/rapid quench cold-seal pressure vessels at 800 °C, 200 MPa, and logfO2 ~ NNO+2.3. Either Cu or Au capsules were used as containers. The reaction products were sampled in situ by the entrapment of synthetic fluid inclusions in quartz. Fluid composition was subsequently determined by analyzing individual fluid inclusions using a freezing cell and laser ablation inductively coupled plasma-mass spectrometry. Our results show that large isolated and isometric inclusions, free of late-stage modifications, can be preserved after the experiment even when using a high cooling rate of 25 K s-1. The obtained results demonstrate that: (1) reaction between native Cu, NaCl solution, and quartz (± silica gel) leads to the coexistence of fluid inclusions and Na-bearing silicate melt inclusions. Micrometer-to submicrometer-sized cuprite (Cu2O) crystals have been observed in both types of the inclusions, and they are formed most probably due to the dissociation of CuOH. (2) When Cu0 reacts with HCl and CuCl solutions, or Cu+ reacts with NaCl solution, nantokite (CuCl) formed due to oversaturation has been found in fluid inclusion. Copper concentration in the fluid shows a strong positive dependence on the initial chlorine content, with Cu/Cl molal ratios varying from 1:9 to 1:1 in case 1 and case 2, respectively. When Cl is fixed to 1.5 m, initial fluid acidity has a major control on the Cu content, i.e., 0.17 ± 0.09 and 1.29 ± 0.57 m Cu were measured in fluids of case 1 and case 2, respectively. Cu solubility in pure water and in 1.5 m NaCl solutions are 0.004 ± 0.002 and 0.16 ± 0.07 m, respectively. The main responsible Cu-bearing complexes are CuOH(H2O)x in water, NaCuCl2 in NaCl solutions and HCuCl2 in alkali-free solutions. These results provide quantitative constraints on the mobility of Cu in hydrothermal solutions and confirm that Cl is a very important ligand responsible for Cu transport. The first observation that silicate melt can be generated in the fluid-dominated and native-copper-bearing system implies that transitional thermosilicate liquids can coexist with metal-rich fluids and may enhance Cu mobility in magmatic-hydrothermal systems. This may have important implications for the formation of Cu deposits in the systems with low S activities.


2021 ◽  
Author(s):  
Zhao Xionghu ◽  
Saviour Bassey Egwu ◽  
Deng Jingen ◽  
Miao Liujie

Abstract The effect of corrosion inhibitor Benzotriazole on synthetic-based mud system was studied. Rheological performance of the benzotriazole enhanced synthetic-based fluid system was studied and compared against the base mud. To study its effect on dynamic wellbore conditions, different drilling fluid compositions were placed in a hot rolling oven for 16 hours at temperatures 150 °C and 170°C and the effect of temperature on mud properties were studied. Tests carried out include rheological test (before and after hot rolling), filtrate pH, lubricity test, and fluid loss test. The corrosion penetration rate was studied using the weight loss method. Based on experiment results, the synthetic-based mud system which comprised of benzotriazole displayed a reduction in coefficient of friction up to 95.93%. At ambient condition, optimal ratio of mineral oil:benzotriazole (M:B) which gives best lubricity performance on synthetic-based mud system is 80:20. This leads to improved corrosion inhibition and lubricity of the synthetic-based fluid by reducing the coefficient of friction up to 90.13%. Increased temperature led to further decrease in coefficient of friction with a % torque reduction of 95.93 displayed by the 80:20 ratio M:B mud composition at 170 °C. Significant alterations of the mud composition rheological and fluid loss parameters before and after exposure to high temperature in hot rolling oven were not observed. pH values were maintained ≥7 at the dynamic conditions highlighting solubility of the formulated fluid composition and absence of contaminants which can pose significant threats to the rates of corrosion in drill pipes. Increasing the concentration of Benzotriazole led to a reduction in corrosion rate. However, as the temperature effect increased, the corrosion rate elevated. Based on results from this investigation, it was concluded that Benzotriazole can be applied as a corrosion inhibitor in a synthetic-based drilling fluid system as an alternative corrosion inhibitor without significant alteration of the base mud properties. Benefits of this will be the optimization of extended reach well drilling operations due to excellent lubricity performance, corrosion rate reduction, compatibility with HPHT wellbore condition and fluid loss control.


2008 ◽  
Vol 420 (1) ◽  
pp. 697-699 ◽  
Author(s):  
Z. A. Kotel’nikova ◽  
A. R. Kotel’nikov

2021 ◽  
Author(s):  
Nicole C. Hurtig ◽  
Artas A. Migdisov ◽  
Anthony E. Williams-Jones

Abstract Ore formation in porphyry Cu-Au-(Mo) systems involves the exsolution of metal-bearing fluids from magmas and the transport of the metals in magmatic-hydrothermal plumes that are subject to pressure fluctuations. Deposition of ore minerals occurs as a result of cooling and decompression of the hydrothermal fluids in partly overlapping ore shells. In this study, we address the role of vapor-like fluids in porphyry ore formation through numerical simulations of metal transport using the Gibbs energy minimization software, GEM-Selektor. The thermodynamic properties of the hydrated gaseous metallic species necessary for modeling metal solubility in fluids of moderate density (100–300 kg/m3) were derived from the results of experiments that investigated the solubility of metals in aqueous HCl- and H2S-bearing vapors. Metal transport and precipitation were simulated numerically as a function of temperature, pressure, and fluid composition (S, Cl, and redox). The simulated metal concentrations and ratios are compared to those observed in vapor-like and intermediate-density fluid inclusions from porphyry ore deposits, as well as gas condensates from active volcanoes. The thermodynamically predicted solubility of Cu, Au, Ag, and Mo decreases during isothermal decompression. At elevated pressure, the simulated metal solubility is similar to the metal content measured in vapor-like and intermediate-density fluid inclusions from porphyry deposits (at ~200–1,800 bar). At ambient pressure, the metal solubility approaches the metal content measured in gas condensates from active volcanoes (at ~1 bar), which is several orders of magnitude lower than that in the high-pressure environment. During isochoric cooling, the simulated solubility of Cu, Ag, and Mo decreases, whereas that of Au reaches a maximum between 35 ppb and 2.6 ppm depending on fluid density and composition. Similar observations are made from a compilation of vapor-like and intermediate-density fluid inclusion data showing that Cu, Ag, and Mo contents decrease with decreasing P and T. Increasing the Cl concentration of the simulated fluid promotes the solubility of Cu, Ag, and Au chloride species. Molybdenum solubility is highest under oxidizing conditions and low S content, and gold solubility is elevated at intermediate redox conditions and elevated S content. The S content of the vapor-like fluid strongly affects metal ratios. Thus, there is a decrease in the Cu/Au ratio as the S content increases from 0.1 to 1 wt %, whereas the opposite is the case for the Mo/Ag ratio; at S contents of >1 wt %, the Mo/Ag ratio also decreases. In summary, thermodynamic calculations based on experiments involving gaseous metallic species predict that vapor-like fluids may transport and efficiently precipitate metals in concentrations sufficient to form porphyry ore deposits. Finally, the fluid composition and pressure-temperature evolution paths of vapor-like and intermediate-density fluids have a strong effect on metal solubility in porphyry systems and potentially exert an important control on their metal ratios and zoning.


2020 ◽  
Vol 272 ◽  
pp. 78-92 ◽  
Author(s):  
Pilar Lecumberri-Sanchez ◽  
Maocheng Luo ◽  
Matthew Steele-MacInnis ◽  
Simone E. Runyon ◽  
D. Matthew Sublett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document