scholarly journals Brain transcriptomes of honey bees ( Apis mellifera ) experimentally infected by two pathogens: Black queen cell virus and Nosema ceranae

Genomics Data ◽  
2016 ◽  
Vol 10 ◽  
pp. 79-82 ◽  
Author(s):  
Vincent Doublet ◽  
Robert J. Paxton ◽  
Cynthia M. McDonnell ◽  
Emeric Dubois ◽  
Sabine Nidelet ◽  
...  
2020 ◽  
Vol 9 (28) ◽  
Author(s):  
Raied Abou Kubaa ◽  
Annalisa Giampetruzzi ◽  
Rocco Addante ◽  
Maria Saponari

ABSTRACT In this study, we documented the complete coding genome sequence of a Black queen cell virus (BQCV) isolate from honey bees in Italy. This genome sequence illustrates a high similarity with other BQCV isolates reported worldwide and could provide insights into BQCV genome phylogeny and divergence.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 963
Author(s):  
Anna Maria Gajda ◽  
Ewa Danuta Mazur ◽  
Andrzej Marcin Bober ◽  
Michał Czopowicz

Nosema ceranae is a relatively new pathogen of the honeybee (Apis mellifera) and the course of type C nosemosis (the disease that it causes) is not entirely known. In order to better understand the course and the consequences of this disease, laboratory experiments were performed. They aimed to compare the course of N. ceranae infection with the course of Nosema apis infection, taking its influence on the black queen cell virus (BQCV) into account. Determination of the quantity of N. ceranae and BQCV genetic material in laboratory tests was performed using real-time PCR. In mixed Nosema infections, N. ceranae “wins” the competition and manages to outnumber N. apis significantly. BQCV exacerbates the course of both A and C nosemoses, but the data shows that in the case of nosemosis C and this viral infection, the mortality rate was the highest from all examined groups. Obtained results show that N. ceranae is more pathogenic for A. mellifera than N. apis, and the course of type C nosemosis is much heavier, which results in the shortened life spans of bees, and in connection with BQCV it becomes even more dangerous to bees.


Apidologie ◽  
2013 ◽  
Vol 44 (4) ◽  
pp. 382-384 ◽  
Author(s):  
Ernesto Guzman-Novoa ◽  
Mollah Md. Hamiduzzaman ◽  
Adriana Correa-Benítez ◽  
Laura G. Espinosa-Montaño ◽  
José L. Uribe-Rubio

2020 ◽  
Vol 40 (11) ◽  
pp. 892-897
Author(s):  
Domitila B. Chagas ◽  
Francielle Liz Monteiro ◽  
Lariane da S. Barcelos ◽  
Matheus Iuri Frühauf ◽  
Leonardo C. Ribeiro ◽  
...  

ABSTRACT: Bees are fundamental in several aspects, especially in relation to plant biodiversity and pollination. Recently, immense losses are being faced in the number of Brazilian colonies, mainly in southern states of the country, which has a strong beekeeping activity. There are indications that, among the reasons for the losses, pathogens that affect the health of bees may be involved. Among them, the microsporidium Nosema and the black queen cell virus (BQCV) stand out for their prevalence. In this study, 92 colonies of 17 apiaries from southern Brazil were evaluated for infection by Nosema ceranae, Nosema apis and BQCV. Nucleic acid extractions and cDNA synthesis were performed from adult bee samples, followed by Reverse Transcription Polymerase Chain Reaction (RT-PCR) and multiplex PCR. Eight BQCV positive samples were subjected to sequencing. The results showed that N. ceranae and BQCV are circulating in the Southern region of the country, which may be the reason for the loss of colonies. N. apis was not found. N. ceranae was found in 57.6% (53/92) of the colonies and BQCV in 32.6% (30/92). Co-infection was found in 25% (23/92) of the colonies studied, a factor that is suggested to be reducing the hosts’ longevity due to the synergistic action of the pathogens. The samples submitted to sequencing indicated similarity of 96.8 to 100% between them, in addition to strong similarity with sequences from Asia, United States, Germany and Peru. This study reports the circulation of N. ceranae and BQCV in apiaries in southern Brazil, in addition to being the first phylogenetic analysis of the Brazilian BQCV sequence.


2021 ◽  
Vol 9 (3) ◽  
pp. 481
Author(s):  
Daniel Borges ◽  
Ernesto Guzman-Novoa ◽  
Paul H. Goodwin

Nosema ceranae is a microsporidian fungus that parasitizes the midgut epithelial cells of honey bees, Apis mellifera. Due to the role that midgut microorganisms play in bee health and immunity, food supplementation with prebiotics and probiotics may assist in the control of N. ceranae. The dietary fiber prebiotics acacia gum, inulin, and fructooligosaccharides, as well as the commercial probiotics Vetafarm Probotic, Protexin Concentrate single-strain (Enterococcus faecium), and Protexin Concentrate multi-strain (Lactobacillus acidophilus, L. plantarum, L. rhamnosus, L. delbrueckii, Bifidobacterium bifidum, Streptococcus salivarius, and E. faecium) were tested for their effect on N. ceranae spore loads and honey bee survivorship. Bees kept in cages were inoculated with N. ceranae spores and single-dose treatments were administered in sugar syrup. Acacia gum caused the greatest reduction in N. ceranae spore numbers (67%) but also significantly increased bee mortality (62.2%). However, Protexin Concentrate single-strain gave similarly reduced spore numbers (59%) without affecting the mortality. In a second experiment, multiple doses of the probiotics revealed significantly reduced spore numbers with 2.50 mg/mL Vetafarm Probotic, and 0.25, 1.25, and 2.50 mg/mL Protexin Concentrate single-strain. Mortality was also significantly reduced with 1.25 mg/mL Protexin Concentrate single-strain. N. ceranae-inoculated bees fed 3.75 mg/mL Vetafarm Probotic had higher survival than N. ceranae-inoculated bees, which was similar to that of non-inoculated bees, while N. ceranae-inoculated bees fed 2.50 mg/mL Protexin Concentrate single-strain, had significantly higher survival than both N. ceranae-inoculated and non-inoculated bees. Protexin Concentrate single-strain is promising as it can reduce N. ceranae proliferation and increase bee survivorship of infected bees, even compared to healthy, non-infected bees.


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Heather Christine Bell ◽  
Corina N Montgomery ◽  
Jaime E Benavides ◽  
James C Nieh

Abstract The health of insect pollinators, particularly the honey bee, Apis mellifera (Linnaeus, 1758), is a major concern for agriculture and ecosystem health. In response to mounting evidence supporting the detrimental effects of neonicotinoid pesticides on pollinators, a novel ‘bee safe’ butenolide compound, flupyradifurone (FPF) has been registered for use in agricultural use. Although FPF is not a neonicotinoid, like neonicotinoids, it is an excitotoxic nicotinic acetylcholine receptor agonist. In addition, A. mellifera faces threats from pathogens, such as the microsporidian endoparasite, Nosema ceranae (Fries et al. 1996). We therefore sought 1) to increase our understanding of the potential effects of FPF on honey bees by focusing on a crucial behavior, the ability to learn and remember an odor associated with a food reward, and 2) to test for a potential synergistic effect on such learning by exposure to FPF and infection with N. ceranae. We found little evidence that FPF significantly alters learning and memory at short-term field-realistic doses. However, at high doses and at chronic, field-realistic exposure, FPF did reduce learning and memory in an olfactory conditioning task. Infection with N. ceranae also reduced learning, but there was no synergy (no significant interaction) between N. ceranae and exposure to FPF. These results suggest the importance of continued studies on the chronic effects of FPF.


2013 ◽  
Vol 52 (2) ◽  
pp. 60-61 ◽  
Author(s):  
Ezio Ferroglio ◽  
Stefania Zanet ◽  
Nancy Peraldo ◽  
Elisa Tachis ◽  
Anna Trisciuoglio ◽  
...  

2009 ◽  
Vol 75 (24) ◽  
pp. 7862-7865 ◽  
Author(s):  
Anna Welch ◽  
Francis Drummond ◽  
Sunil Tewari ◽  
Anne Averill ◽  
John P. Burand

ABSTRACT Migratory and local bees in Massachusetts were analyzed for seven viruses. Three were detected: black queen cell virus (BQCV), deformed wing virus (DWV), and sacbrood virus (SBV). DWV was most common, followed closely by BQCV and then by SBV. BQCV and SBV were present at significantly higher rates in the migratory bees assayed, bringing into question the impact that these bees have on the health of local bee populations.


Sign in / Sign up

Export Citation Format

Share Document