acute bee paralysis virus
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 2)

Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 884
Author(s):  
Metka Pislak Ocepek ◽  
Ivan Toplak ◽  
Urška Zajc ◽  
Danilo Bevk

Slovenia has a long tradition of beekeeping and a high density of honeybee colonies, but less is known about bumblebees and their pathogens. Therefore, a study was conducted to define the incidence and prevalence of pathogens in bumblebees and to determine whether there are links between infections in bumblebees and honeybees. In 2017 and 2018, clinically healthy workers of bumblebees (Bombus spp.) and honeybees (Apis mellifera) were collected on flowers at four different locations in Slovenia. In addition, bumblebee queens were also collected in 2018. Several pathogens were detected in the bumblebee workers using PCR and RT-PCR methods: 8.8% on acute bee paralysis virus (ABPV), 58.5% on black queen cell virus (BQCV), 6.8% on deformed wing virus (DWV), 24.5% on sacbrood bee virus (SBV), 15.6% on Lake Sinai virus (LSV), 16.3% on Nosema bombi, 8.2% on Nosema ceranae, 15.0% on Apicystis bombi and 17.0% on Crithidia bombi. In bumblebee queens, only the presence of BQCV, A. bombi and C. bombi was detected with 73.3, 26.3 and 33.3% positive samples, respectively. This study confirmed that several pathogens are regularly detected in both bumblebees and honeybees. Further studies on the pathogen transmission routes are required.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 808
Author(s):  
Ivana Tlak Gajger ◽  
Laura Šimenc ◽  
Ivan Toplak

To determine the presence and the prevalence of four different honeybee viruses (acute bee paralysis virus—ABPV, black queen cell virus—BQCV, chronic bee paralysis virus—CBPV, deformed wing virus—DWV) in wild bumblebees, pooled randomly selected bumblebee samples were collected from twenty-seven different locations in the territory of Croatia. All samples were prepared and examined using the RT-PCR methods for quantification of mentioned honeybee viruses. Determined prevalence (%) of identified positive viruses were in the following decreasing order: BQCV > DWV > ABPV, CBPV. Additionally, direct sequencing of samples positive for BQCV (n = 24) and DWV (n = 2) was performed, as well as a test of molecular phylogeny comparison with those available in GenBank. Selected positive field viruses’ strains showed 95.7 to 100% (BQCV) and 98.09% (DWV) nucleotide identity with previously detected and deposited honeybee virus strains in the geographic areas in Croatia and neighboring Slovenia. In this article, the first detection of four honeybee viruses with genetic characterization of high diversity strains circulating in wild bumblebees in Croatia is presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Barbara Locke ◽  
Srinivas Thaduri ◽  
Jörg G. Stephan ◽  
Matthew Low ◽  
Tjeerd Blacquière ◽  
...  

AbstractThe ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes. Several honeybee populations across Europe have well-documented adaptations of mite-resistant traits but little is known about host adaptations towards the virus infections vectored by the mite. The aim of this study was to assess and compare the possible contribution of adapted virus tolerance and/or resistance to the enhanced survival of four well-documented mite-resistant honeybee populations from Norway, Sweden, The Netherlands and France, in relation to unselected mite-susceptible honeybees. Caged adult bees and laboratory reared larvae, from colonies of these four populations, were inoculated with DWV and ABPV in a series of feeding infection experiments, while control groups received virus-free food. Virus infections were monitored using RT-qPCR assays in individuals sampled over a time course. In both adults and larvae the DWV and ABPV infection dynamics were nearly identical in all groups, but all mite-resistant honeybee populations had significantly higher survival rates compared to the mite-susceptible honeybees. These results suggest that adapted virus tolerance is an important component of survival mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
David J. Pascall ◽  
Matthew C. Tinsley ◽  
Bethany L. Clark ◽  
Darren J. Obbard ◽  
Lena Wilfert

Viruses are key population regulators, but we have limited knowledge of the diversity and ecology of viruses. This is even the case in wild host populations that provide ecosystem services, where small fitness effects may have major ecological impacts in aggregate. One such group of hosts are the bumblebees, which have a major role in the pollination of food crops and have suffered population declines and range contractions in recent decades. In this study, we investigate the diversity of four recently discovered bumblebee viruses (Mayfield virus 1, Mayfield virus 2, River Liunaeg virus, and Loch Morlich virus), and two previously known viruses that infect both wild bumblebees and managed honeybees (Acute bee paralysis virus and Slow bee paralysis virus) from isolates in Scotland. We investigate the ecological and environmental factors that determine viral presence and absence. We show that the recently discovered bumblebee viruses were more genetically diverse than the viruses shared with honeybees. Coinfection is potentially important in shaping prevalence: we found a strong positive association between River Liunaeg virus and Loch Morlich virus presence after controlling for host species, location and other relevant ecological variables. We tested for a relationship between environmental variables (temperature, UV radiation, wind speed, and prevalence), but as we had few sampling sites, and thus low power for site-level analyses, we could not conclude anything regarding these variables. We also describe the relationship between the bumblebee communities at our sampling sites. This study represents a first step in the description of predictors of bumblebee infection in the wild.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 372
Author(s):  
Antonio Nanetti ◽  
James D. Ellis ◽  
Ilaria Cardaio ◽  
Giovanni Cilia

Knowledge regarding the honey bee pathogens borne by invasive bee pests remains scarce. This investigation aimed to assess the presence in Aethina tumida (small hive beetle, SHB) adults of honey bee pathogens belonging to the following groups: (i) bacteria (Paenibacillus larvae and Melissococcus plutonius), (ii) trypanosomatids (Lotmaria passim and Crithidia mellificae), and (iii) viruses (black queen cell virus, Kashmir bee virus, deformed wing virus, slow paralysis virus, sacbrood virus, Israeli acute paralysis virus, acute bee paralysis virus, chronic bee paralysis virus). Specimens were collected from free-flying colonies in Gainesville (Florida, U.S.A.) in summer 2017. The results of the molecular analysis show the presence of L. passim, C. mellificae, and replicative forms of deformed wing virus (DWV) and Kashmir bee virus (KBV). Replicative forms of KBV have not previously been reported. These results support the hypothesis of pathogen spillover between managed honey bees and the SHB, and these dynamics require further investigation.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1310
Author(s):  
Ivan Toplak ◽  
Laura Šimenc ◽  
Metka Pislak Ocepek ◽  
Danilo Bevk

In recent years, there has been growing evidence that certain types of honeybee viruses could be transmitted between different pollinators. Within a voluntary monitoring programme, 180 honeybee samples (Apis mellifera carnica) were collected from affected apiaries between 2007 and 2018. Also from August 2017 to August 2018, a total 148 samples of healthy bumblebees (Bombus lapidarius, B. pascuorum, B. terrestris, B. lucorum, B. hortorum, B. sylvarum, B. humilis) were collected at four different locations in Slovenia, and all samples were tested by using RT-PCR methods for six honeybee viruses. Direct sequencing of a total 158 positive samples (acute bee paralysis virus (ABPV n = 33), black queen cell virus (BQCV n = 75), sacbrood bee virus (SBV n = 25) and Lake Sinai virus (LSV n = 25)) was performed from obtained RT-PCR products. The genetic comparison of identified positive samples of bumblebees and detected honeybee field strains of ABPV, BQCV, SBV, and LSV demonstrated 98.74% to 100% nucleotide identity between both species. This study not only provides evidence that honeybees and bumblebees are infected with genetically identical or closely related viral strains of four endemically present honeybee viruses but also detected a high diversity of circulating strains in bumblebees, similar as was observed among honeybees. Important new genetic data for endemic strains circulating in honeybees and bumblebees in Slovenia are presented.


Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 382 ◽  
Author(s):  
Jessica L. Kevill ◽  
Katie Lee ◽  
Michael Goblirsch ◽  
Erin McDermott ◽  
David R. Tarpy ◽  
...  

Throughout a honey bee queen’s lifetime, she is tended to by her worker daughters, who feed and groom her. Such interactions provide possible horizontal transmission routes for pathogens from the workers to the queen, and as such a queen’s pathogen profile may be representative of the workers within a colony. To explore this further, we investigated known honey bee pathogen co-occurrence, as well as pathogen transmission from workers to queens. Queens from 42 colonies were removed from their source hives and exchanged into a second, unrelated foster colony. Worker samples were taken from the source colony on the day of queen exchange and the queens were collected 24 days after introduction. All samples were screened for Nosema spp., Trypanosome spp., acute bee paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), Israeli acute paralysis virus (IAPV), Lake Sinai virus (LSV), and deformed wing virus master variants (DWV-A, B, and C) using RT-qPCR. The data show that LSV, Nosema, and DWV-B were the most abundant pathogens in colonies. All workers (n = 42) were LSV-positive, 88% were Nosema-positive, whilst pathogen loads were low (<1 × 106 genome equivalents per pooled worker sample). All queens (n = 39) were negative for both LSV and Nosema. We found no evidence of DWV transmission occurring from worker to queen when comparing queens to foster colonies, despite DWV being present in both queens and workers. Honey bee pathogen presence and diversity in queens cannot be revealed from screening workers, nor were pathogens successfully transmitted to the queen.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1102 ◽  
Author(s):  
Mathieu Bourgarel ◽  
Valérie Noël ◽  
Davies Pfukenyi ◽  
Johan Michaux ◽  
Adrien André ◽  
...  

Viruses belonging to the Dicistroviridae family have attracted a great deal of attention from scientists owing to their negative impact on agricultural economics, as well as their recent identification as potential aetiological agents of febrile illness in human patients. On the other hand, some Dicistroviruses are also studied for their potential biopesticide properties. To date, Dicistrovirus characterized in African mainland remain scarce. By using High-Throughput Sequencing technology on insectivorous bat faeces (Hipposideros Caffer) sampled in a cave used by humans to collect bat guano (bat manure) as fertilizer in Zimbabwe, we characterized the full-length sequences of three Dicistrovirus belonging to the Cripavirus and Aparavirus genus: Big Sioux River Virus-Like (BSRV-Like), Acute Bee Paralysis Virus (ABPV), and Aphid Lethal Paralysis Virus (ALPV). Phylogenetic analyses of ORF-1 and ORF-2 genes showed a complex evolutionary history between BSRV and close viruses, as well as for the Aparavirus genus. Herewith, we provide the first evidence of the presence of Dicistrovirus in Zimbabwe and highlight the need to further document the impact of such viruses on crops, as well as in beekeeping activities in Zimbabwe which represent a crucial source of income for Zimbabwean people.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1041 ◽  
Author(s):  
Anne Dalmon ◽  
Philippe Gayral ◽  
Damien Decante ◽  
Christophe Klopp ◽  
Diane Bigot ◽  
...  

The Asian yellow-legged hornet Vespa velutina nigrithorax, a major predator of honeybees, is spreading in Europe in part due to a lack of efficient control methods. In this study, as a first step to identify biological control agents, we characterized viral RNA sequences present in asymptomatic or symptomatic hornets. Among 19 detected viruses, the honey bee virus Deformed wing virus-B was predominant in all the samples, particularly in muscles from the symptomatic hornet, suggesting a putative cause of the deformed wing symptom. Interestingly, two new viruses closely related to Acyrthosiphon pisum virus and Himetobi P virus and viruses typically associated with honey bees, Acute bee paralysis virus and Black queen cell virus, were detected in the brain and muscles, and may correspond to the circulation and possible replication forms of these viruses in the hornet. Aphid lethal paralysis virus, Bee Macula-like virus, and Moku virus, which are known to infect honey bees, were also identified in the gut virus metagenome of hornets. Therefore, our study underlined the urgent need to study the host range of these newly discovered viruses in hornets to determine whether they represent a new threat for honey bees or a hope for the biocontrol of V. velutina.


Sign in / Sign up

Export Citation Format

Share Document