scholarly journals Demographic performance of a pioneer tree species during ecological restoration in the soil erosion area of southeastern China

2021 ◽  
pp. e01936
Author(s):  
Wenhao Zhao ◽  
Tian Li ◽  
Yujie Cui ◽  
Jinlu Huang ◽  
Hejing Fu ◽  
...  
Biotropica ◽  
2021 ◽  
Author(s):  
Selina A. Ruzi ◽  
Paul‐Camilo Zalamea ◽  
Daniel P. Roche ◽  
Rafael Achury ◽  
James W. Dalling ◽  
...  

2007 ◽  
Vol 17 (4) ◽  
pp. 273-281 ◽  
Author(s):  
Matthew I. Daws ◽  
Sheina Bolton ◽  
David F.R.P. Burslem ◽  
Nancy C. Garwood ◽  
Christopher E. Mullins

AbstractOrthodox, desiccation-tolerant seeds lose desiccation tolerance during germination. Here, we quantify the timing of the loss of desiccation tolerance, and explore the implications of this event for seed mortality and the shape of germination progress curves for pioneer tree species. For the nine species studied, all seeds in a seedlot lost desiccation tolerance after the same fixed proportion of their time to germination, and this proportion was fairly constant across the species (0.63–0.70). The loss of desiccation tolerance after a fixed proportion of the time to germination has the implication that the maximum number of seeds in a seedlot that can be killed by a single drying event during germination (Mmax) increases with an increasing time to 50% germination (t50) and an increasing slope of the germination progress curve. Consequently, to prevent the seed population from becoming highly vulnerable to desiccation-induced mortality, species with a greater t50 would be expected to have a shallower germination progress curve. In conclusion, these data suggest that the loss of desiccation tolerance during germination may constitute a significant, but previously unexplored, source of mortality for seeds in seasonal environments with unpredictable rainfall.


2018 ◽  
Vol 41 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Caroline Felfili Fortes ◽  
Cátia Nunes-da-Cunha ◽  
Sejana Artiaga Rosa ◽  
Eliana Paixão ◽  
Wolfgang J. Junk ◽  
...  

2004 ◽  
Vol 20 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Dirk Hölscher ◽  
C. Leuschner ◽  
K. Bohman ◽  
J. Juhrbandt ◽  
S. Tjitrosemito

Tropical pioneer tree species are considered as a functional group characterized by a suite of ecological characteristics such as high light demand and high photosynthetic capacities. This study compared the photosynthetic characteristics of eight co-existing pioneer tree species in 3–4-y-old and about 6-m-tall secondary forest stands in Sulawesi, Indonesia. Its objectives were (1) to determine the range and interspecific variation in six photosynthetic parameters, and (2) to identify morphological and chemical leaf traits that can predict light-saturated net photosynthetic rates (on a leaf area or leaf mass basis, Amax-area or Amax-mass). Species averages of Amax-area in sun leaves ranged between 14.2 and 20.3 μmol m−2 s−1 (mean 17.5) which is high compared with literature data. Among the co-existing species, average leaf size (56–896 cm2) differed by a factor of 16, specific leaf area (SLA, 10.7–21.4 m2 kg−1) and leaf nitrogen content (19.6–33.9 g kg−1) twofold. At the species level, Amax-area was not correlated with leaf N content but decreased significantly with leaf size. Amax-mass showed a higher interspecific variation than Amax-area, and was positively correlated with SLA and leaf N content (slope: 13.4 nmol CO2 g N−1 s−1). Both, Amax-area and Amax-mass were more closely related to leaf morphological attributes than to leaf N. We conclude that the tropical pioneer tree species studied do not form a homogeneous functional group in terms of photosynthetic performance. Rather, a considerable variation in leaf morphology and nitrogen content exists, which also shows up in a substantial variation in Amax-mass and, to a lesser extent, in Amax-area.


Sign in / Sign up

Export Citation Format

Share Document