seed population
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 17)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Shuta Kurokawa ◽  
Hafizur Rhaman ◽  
Naoshi Yamanaka ◽  
Chisato Ishizaki ◽  
Shaikhul Islam ◽  
...  

Abstract The CRISPR/Cas9 system is now commonly employed for genome editing in various plants such as Arabidopsis, rice, and tobacco. In general, in genome editing of the Arabidopsis genome, the SpCas9 and guide RNA genes are introduced into the genome by the floral dip method. Mutations induced in the target sequence by SpCas9 are confirmed after selecting transformants by screening the T1 seed population. The advantage of this method is that genome-edited plants can be isolated easily. However, mutation efficiency in Arabidopsis using SpCas9 is not as high as that achieved in rice and tobacco, which are subjected to a tissue culture step. In this study, we compared four promoters and found that the parsley UBIQITIN promoter is highly active in Arabidopsis meristem tissue. Furthermore, we examined whether a simple heat treatment could improve mutation efficiency in Arabidopsis. Just one heat treatment at 37 °C for 24 hours increased the mutation efficiency at all four target sites from 3% to 42%, 43% to 62%, 54% to 75%, and 89 to 91%, respectively, without detectable off-target mutations. We recommend heat treatment of plate-grown plants at 37 °C for 24 hours as a simple method to increase the efficiency of CRISPR/Cas9-mediated mutagenesis in Arabidopsis.


2021 ◽  
Vol 87 (3) ◽  
Author(s):  
O. Linder ◽  
G. Papp ◽  
E. Fable ◽  
F. Jenko ◽  
G. Pautasso ◽  
...  

The formation of a substantial postdisruption runaway electron current in ASDEX Upgrade material injection experiments is determined by avalanche multiplication of a small seed population of runaway electrons. For the investigation of these scenarios, the runaway electron description of the coupled 1.5-D transport solvers ASTRA-STRAHL is amended by a fluid model describing electron runaway caused by the hot-tail mechanism. Applied in simulations of combined background plasma evolution, material injection and runaway electron generation in ASDEX Upgrade discharge #33108, both the Dreicer and hot-tail mechanism for electron runaway produce only ${\sim }$ 3 kA of runaway current. In colder plasmas with core electron temperatures $T_\textrm {e,c}$ below 9 keV, the postdisruption runaway current is predicted to be insensitive to the initial temperature, in agreement with experimental observations. Yet in hotter plasmas with $T_\textrm {e,c}$ above 10 keV, hot-tail runaway can be increased by up to an order of magnitude, contributing considerably to the total postdisruption runaway current. In ASDEX Upgrade high-temperature runaway experiments, however, no runaway current is observed at the end of the disruption, despite favourable conditions for both primary and secondary runaway.


2021 ◽  
Vol 665 ◽  
pp. 115-125
Author(s):  
DJ Deaker ◽  
B Mos ◽  
C Lawson ◽  
SA Dworjanyn ◽  
C Budden ◽  
...  

The transition from the post-settlement herbivorous juvenile to the coral-eating stage of crown-of-thorns starfish (COTS) is a fundamental step to seed population outbreaks that decimate tropical coral reefs. How the highly cryptic juveniles fare during this transition is poorly understood. We show that the juveniles are vulnerable to attack by coral during this ontogenetic diet shift to coral prey. We monitored the condition, growth, and survival of juvenile COTS during the first 3.5 mo on a diet of Acropora sp. In initial encounters, juveniles often withdrew their arms to avoid the defensive nematocysts of the corals. Within the first 67 d of being offered coral, 37.8% of the juveniles experienced various levels of sublethal and lethal damage. Damaged arms were reduced to ~65.4% of the length of an intact arm, but most injured juveniles were able to regenerate their arms with an average predicted recovery time of ~4 mo. Although sublethal damage slowed the growth of injured juveniles, their capacity to regenerate is likely to contribute to the success of this highly prolific species. Despite being the prey of COTS, coral can influence the survival of juveniles, and potentially reduce their ecological impact by prolonging their growth to reproductive maturity, delaying their transition into a coral predator, and thereby hindering recruitment into the adult population.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
M. Hoppe ◽  
L. Hesslow ◽  
O. Embreus ◽  
L. Unnerfelt ◽  
G. Papp ◽  
...  

Synchrotron radiation images from runaway electrons (REs) in an ASDEX Upgrade discharge disrupted by argon injection are analysed using the synchrotron diagnostic tool Soft and coupled fluid-kinetic simulations. We show that the evolution of the runaway distribution is well described by an initial hot-tail seed population, which is accelerated to energies between 25–50 MeV during the current quench, together with an avalanche runaway tail which has an exponentially decreasing energy spectrum. We find that, although the avalanche component carries the vast majority of the current, it is the high-energy seed remnant that dominates synchrotron emission. With insights from the fluid-kinetic simulations, an analytic model for the evolution of the runaway seed component is developed and used to reconstruct the radial density profile of the RE beam. The analysis shows that the observed change of the synchrotron pattern from circular to crescent shape is caused by a rapid redistribution of the radial profile of the runaway density.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Mukund R. Shukla ◽  
Annaliese Kibler ◽  
Christina E. Turi ◽  
Lauren A. E. Erland ◽  
J. Alan Sullivan ◽  
...  

Tulsi (Ocimum sanctum L.) is a sacred plant of medicinal and spiritual significance in many cultures. Medicinal properties of Tulsi are ascribed to its phytochemicals with antioxidant capabilities. The current study was undertaken to screen a large seed population of Tulsi to select germplasm lines with high antioxidant potential and to standardize protocols for micropropagation and biomass production to produce a phytochemically consistent crop. A total of 80 germplasm lines were established under in vitro conditions and screened for their antioxidant potential determined with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) bioassay. The micropropagation of a selected line, named Vrinda, was established using nodal cultures grown on Murashige and Skoog medium containing benzylaminopurine (1.1 µM), gibberellic acid (0.3 µM), and activated charcoal (0.6%). The antioxidant phytohormones melatonin and serotonin were quantified in the field and greenhouse grown tissues of Vrinda and melatonin levels were found to be consistent in both conditions with higher serotonin levels under field conditions. This integrated approach combining the in vitro selection and propagation offers potential applications in the development of safe, effective, and novel natural health products of Tulsi, and many other medicinal plant species.


2021 ◽  
Vol 32 (1) ◽  
pp. 94-101
Author(s):  
A. O. Jolaosho ◽  
J. A. Olanite ◽  
B. O. Oduguwa ◽  
E. A. O. Adekunle

An experiment to determine the effects of seasonal variations on population and viability of seeds in the faeces of ruminant animals was conducted between April to December 2001 using two breeds of cattle, sheep and goats. Three samples were collected per breed from three animals that were tagged for uniformity of data collection. Sampling took place weekly, in the mornings before the animals were taken out for grazing. The highest (P<0.05) total number of seeds, seeds/g dry weights and total number of viable seeds were recovered from cattle, while the least were from goats, but the reverse was the case for percentage viability. The weights of the faeces were significantly (P<0.05) higher in the rainy season than the dry season. The weights of the faeces reduced gradually as the dry season sets in. Likewise, there were more seeds in the early rain than in the late rain and early dry season, with the percentage viability higher in the late rains and early dry season than the early rainy season. There were more broadleaved weeds and sedges in the early rain than late rain and early dry season but the reverse was the case for grasses. In conclusion, although there were more faeces and consequently more seed production in the rainy season, however, but the viability was lower than in the dry season. Also, seeds of broadleaved plants were more in the rainy season while those of grasses were more in the dry season. More seeds and number of viable seeds were recovered from the faeces of cattle than sheep and goats in all the seasons due to the higher weights of faeces but the percentage viability was higher for sheep and goat than cattle. 


Author(s):  
Donald V. Reames

AbstractHow well do protons fit into the abundance patterns of the other elements? Protons have Q = 1 and A/Q = 1 at all temperatures of interest. When does their relative abundance fit on the power law in A/Q defined by the elements with A/Q > 2? For small “pure” impulsive events, protons fit well, but for larger CME-associated impulsive events, where shock waves boost the intensities, protons are enhanced a factor of order ten by addition of seed protons from the ambient plasma. During most large gradual SEP events with strong shock waves, protons again fit the power law, but with weaker or quasi-perpendicular shock waves, dominated by residual impulsive seed particle abundances at high Z, again protons are enhanced. Proton enhancements occur when moderately weak shock waves happen to sample a two-component seed population with dominant protons from the ambient coronal plasma and impulsive suprathermal ions at high Z; thus proton-enhanced events are a surprising new signature of shock acceleration in jets. A/Q measures the rigidity dependence of both acceleration and transport but does not help us distinguish the two. Energy-spectral indices and abundances are correlated for most gradual events but not when impulsive ions are present; thus we end with powerful new correlations that probe both acceleration and transport.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maja Belić ◽  
Snežana Zdravković-Korać ◽  
Branka Uzelac ◽  
Dušica Ćalić ◽  
Suzana Pavlović ◽  
...  

Abstract High variability in somatic embryo (SE)-forming capacity has previously been observed in several spinach cultivars. Such variability frequently accounted for more variation in embryogenic response of the explants than the factor being investigated. Hence, the variability in embryogenic capacity was examined in the present study at both the population and the single-seedling level, using seeds of spinach cultivar Matador obtained from nine European seed companies. Seed population obtained from Slovenia (Sl) was superior to others, with the highest regeneration frequency (100%) and the highest mean SE number (14.4). A total of 82% of these seedlings had 80–100% of regenerating explants, while in populations with intermediate embryogenic capacity approximately 40% of seedlings had 20–60% of regenerating explants. The explants from the majority of seedlings (52–100%) in the least responsive populations were irresponsive. Furthermore, the explants from Sl seedlings regenerated from 10–20 (43.5%) up to > 20 (27.6%) SEs on average, while the explants from the majority of seedlings belonging to other populations regenerated 1–10 SEs. The present study strongly indicates that the variability of plant material must not be overlooked, because choosing more responsive individuals for one treatment and less responsive ones for another may lead to misinterpretation of the data.


2020 ◽  
Author(s):  
Hayley Allison ◽  
Yuri Shprits ◽  
Sarah Glauert ◽  
Richard Horne ◽  
Dedong Wang

&lt;p&gt;&lt;span&gt;The Earth&amp;#8217;s electron radiation belts are a dynamic environment and can change dramatically on short timescales. From Van Allen Probes observations, we see storm time drop-out events followed by a rapid recovery of the electron flux over a broad range of energies. Substorms can supply a seed population of new electrons to the radiation belt region, which are then energised by a number of processes, rebuilding the belts. &lt;/span&gt;However, how the electron flux is replenished across energy space, and the sequence of events leading to flux enhancements, remains an open question. Here we use a 3-D radiation belt model to explore how the seed population is accelerated to 1 MeV on realistic timescales, comparing the output to Van Allen Probes observations. By using a low energy boundary condition derived by POES data we encompass the whole radiation belt region, employing an open outer boundary condition. This approach isolates the contribution of seed population changes and allows electron flux variations over a broad range of L* to be studied. Using the model, we explore the contribution of both local acceleration and radial diffusion and demonstrate that the timing and duration of these two processes, particularly in relation to one another, is important to determine how the radiation belt rebuilds.&lt;/p&gt;


2020 ◽  
Author(s):  
Jonathan Niehof ◽  
Nathan Schwadron ◽  

&lt;p&gt;A series of solar energetic particle (SEP) events were observed at Parker Solar Probe (PSP) by the Integrated Science Investigation of the Sun (IS&amp;#9737;IS) during the period from April 18, 2019 through April 24, 2019. The PSP spacecraft was located near 0.48 au from the Sun on Parker spiral field lines that projected out to 1 au within &amp;#8764;25&lt;strong&gt;&amp;#176;&lt;/strong&gt; of near Earth spacecraft. These SEP events, though small compared to historically large SEP events, were amongst the largest observed thus far in the PSP mission and provide critical information about the space environment inside 1 au during SEP events. During this period the Sun released multiple coronal mass ejections (CMEs). One of these CMEs observed was initiated on April 20, 2019 at 01:25 UTC, and the interplanetary CME (ICME) propagated out and passed over the PSP spacecraft. Observations by the Electromagnetic Fields Investigation (FIELDS) show that the magnetic field structure was mostly radial throughout the passage of the compression region and the plasma that followed, indicating that PSP did not directly observe a flux rope internal to the ICME, consistent with the location of PSP on the flank of the ICME. Analysis using relativistic electrons observed near Earth by the Electron, Proton and Alpha Monitor (EPAM) on the Advanced Composition Explorer (ACE) demonstrates the presence of flare-accelerated seed populations during the events observed. The energy spectrum of the IS&amp;#9737;IS observed seed population below 1 MeV is consistent with the superposition of acceleration processes near the limit of plasma stability. IS&amp;#9737;IS observations reveal the compression and acceleration of seed populations during the passage of the ICME, which is likely a key part of the pre-acceleration process that occurs close to the Sun and pre-conditions the energetic particle acceleration process.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document