Chemotherapy-related secondary leukemias: A role for DNA repair by error-prone non-homologous end joining in topoisomerase II — Induced chromosomal rearrangements

Gene ◽  
2007 ◽  
Vol 391 (1-2) ◽  
pp. 76-79 ◽  
Author(s):  
Omar L. Kantidze ◽  
Sergey V. Razin
PLoS Genetics ◽  
2014 ◽  
Vol 10 (7) ◽  
pp. e1004511 ◽  
Author(s):  
Amita Vaidya ◽  
Zhiyong Mao ◽  
Xiao Tian ◽  
Brianna Spencer ◽  
Andrei Seluanov ◽  
...  

2002 ◽  
Vol 196 (4) ◽  
pp. 469-480 ◽  
Author(s):  
Michael J. Difilippantonio ◽  
Simone Petersen ◽  
Hua Tang Chen ◽  
Roger Johnson ◽  
Maria Jasin ◽  
...  

Nonreciprocal translocations and gene amplifications are commonly found in human tumors. Although little is known about the mechanisms leading to such aberrations, tissue culture models predict that they can arise from DNA breakage, followed by cycles of chromatid fusion, asymmetric mitotic breakage, and replication. Mice deficient in both a nonhomologous end joining (NHEJ) DNA repair protein and the p53 tumor suppressor develop lymphomas at an early age harboring amplification of an IgH/c-myc fusion. Here we report that these chromosomal rearrangements are initiated by a recombination activating gene (RAG)-induced DNA cleavage. Subsequent DNA repair events juxtaposing IgH and c-myc are mediated by a break-induced replication pathway. Cycles of breakage-fusion-bridge result in amplification of IgH/c-myc while chromosome stabilization occurs through telomere capture. Thus, mice deficient in NHEJ provide excellent models to study the etiology of unbalanced translocations and amplification events during tumorigenesis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5076-5076
Author(s):  
Sugunakar Vuree ◽  
Anuradha Cingeetham ◽  
Dunna Nageswara Rao ◽  
Manjula Gorre ◽  
Sudha Sinha ◽  
...  

Purpose of the study: Deregulated DNA repair is one of the hallmarks of cancers including Acute Myeloid Leukemia (AML), as it results in genomic instability. ATM gene functions as a sensor, activates cascade of events leading to stimulation of multiple DNA damage- responsive signaling pathways. Principal DNA repair mechanism activated in the hematopoietic stem cells is the Non Homologous End Joining (NHEJ) pathway. However, this pathway was shown to be error prone. Functional SNPs in the genes involved in DNA repair might influence the gene expression leading to altered DNA repair which might confer the risk to AML. Materials & Methods: This hospital-based case-control study included 225 AML patients and 326 cancer-free controls from South Indian population. Six polymorphisms of XRCC5, XRCC6, XRCC7 and ATM were genotyped using polymerase chain reaction (PCR)-Restriction Fragment Length Polymorphism (PCR- RFLP) method. Statistical analyses were performed by using SPSS (version20v) and SNPSTAT online tool. Protein-Protein Interaction (PPI) analysis was also done to see the relationship between these genes. Results: We found that there was an elevated risk of AML associated with the XRCC5 VNTR 0R repeat and A allele of 2408G>A polymorphism (p-0.04 and p<0.0001 respectively), the frequencies of G allele (p-<0.0001) of XRCC6 -1310C>G and T allele (p-0.003) of ATM -5144A>T polymorphisms were also significantly increased in AML cases. Further, analyses of the variant genotypes with epidemiological and clinical variables revealed a significant association of the risk genotypes with development and progression of AML. Conclusion: The XRCC5 0R repeat, 2408G>A, XRCC6 -1310 C>G and ATM- 5144A>T polymorphisms, but not XRCC6 -61C>G and XRCC7 6721G>T polymorphisms, play an important role in the pathogenesis of AML. Figure Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Daniele Caracciolo ◽  
Martina Montesano ◽  
Emanuela Altomare ◽  
Grazia Consolo ◽  
Nicola Amodio ◽  
...  

Author(s):  
Zhonghe Ke ◽  
Denis Firsanov ◽  
Brianna Spencer ◽  
Andrei Seluanov ◽  
Vera Gorbunova

2008 ◽  
Vol 36 (15) ◽  
pp. 4872-4882 ◽  
Author(s):  
S. Malyarchuk ◽  
R. Castore ◽  
L. Harrison

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 521-521
Author(s):  
David L. Caudell ◽  
Abdul Gafoor A. Puthiyaveetil

Abstract Abstract 521 Chromosomal translocations are hallmark features of hematologic malignancies that often require collaborating mutations for malignant transformation. These secondary mutations can occur spontaneously, or rather, be induced by the primary translocation. Mutations can occur as a result of DNA damage and misrepair with DNA double strand breaks being one of the most serious types of cell damage. Double strand breaks are classically repaired by the non-homologous end joining (NHEJ) mechanism and impaired NHEJ has been shown to promote mutagenesis. Transgenic mice expressing the myeloid leukemic fusion gene NUP98-HOXD13 (NHD13) develop Myelodysplastic syndrome and progress to acute leukemia after acquiring secondary mutations. Our studies have shown that B lymphocyte development and class switch recombination are impaired in stimulated B lymphocytes from NHD13 mice. Based on this, we used in vitro class switch recombination (CSR) to delineate the DNA break induction and repair mechanisms in NHD13 B lymphocytes. Naïve B lymphocytes were harvested from wild type (WT) and NHD13 spleens and cultured in the presence of E.coli Lipopolysaccharide (LPS) and IL-4 to induce CSR. The DNA break induction pattern was determined using phosphorylated H2AX labeling combined with confocal microscopy and flow cytometry. Our results showed that NHD13 B lymphocytes had a comparable break induction pattern, but significantly reduced DNA repair. Analysis of the cell cycle pattern of stimulated B cells at 24 hour intervals showed cell cycle arrest at the G2/M phase at 72 hours following stimulation—a hallmark feature of impaired DNA break repair. We analyzed the expression of classical NHEJ and alternative end joining factors including Ku70, Ku80, DNA Protein Kinase catalytic subunit (DNAPKcs), Xrcc4, DNA ligase 4, Ligase 1, and Ligase 3. Our results showed reduced expression of DNAPKcs, Ligase 4 and Xrcc4 in NHD13 B lymphocytes at 72 hours following stimulation, suggesting that cells failed to initiate NHEJ-mediated DNA repair. Our results suggest that a myeloid leukemic gene can impair the DNA repair mechanism and may indirectly promote mutations necessary for malignant transformation. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document