Phylogeographic analyses of a migratory freshwater fish (Megalobrama terminalis) reveal a shallow genetic structure and pronounced effects of sea-level changes

Gene ◽  
2020 ◽  
Vol 737 ◽  
pp. 144478
Author(s):  
Weitao Chen ◽  
Ce Li ◽  
Fangcan Chen ◽  
Yuefei Li ◽  
Jiping Yang ◽  
...  
2020 ◽  
Author(s):  
Sean J Buckley ◽  
Chris Brauer ◽  
Peter Unmack ◽  
Michael Hammer ◽  
Luciano B. Beheregaray

ABSTRACTWhile the influence of Pleistocene climatic changes on divergence and speciation has been well-documented across the globe, complex spatial interactions between hydrology and eustatics over longer timeframes may also determine species evolutionary trajectories. Within the Australian continent, glacial cycles were not associated with changes in ice cover and instead largely resulted in fluctuations from moist to arid conditions across the landscape. Here, we investigate the role of hydrological and coastal topographic changes brought about by Plio-Pleistocene climatic changes on the biogeographic history of a small Australian freshwater fish, the southern pygmy perch Nannoperca australis. Using 7,958 ddRAD-seq (double digest restriction-site associated DNA) loci and 45,104 filtered SNPs, we combined phylogenetic, coalescent and species distribution analyses to investigate the relative roles of aridification, sea level and tectonics and their associated biogeographic changes across southeast Australia. Sea-level changes since the Pliocene and reduction or disappearance of large waterbodies throughout the Pleistocene were determining factors in strong divergence across the clade, including the initial formation and maintenance of a cryptic species, N. ‘flindersi’. Isolated climatic refugia and fragmentation due to lack of connected waterways maintained the identity and divergence of inter- and intraspecific lineages. Our historical findings suggest that predicted increases in aridification and sea level due to anthropogenic climate change might result in markedly different demographic impacts, both spatially and across different landscape types.


2021 ◽  
Vol 19 (2) ◽  
Author(s):  
Nathália Luiz Pio ◽  
Tiago P. Carvalho

Abstract The coastal basins of southeastern Brazil are influenced by climatic changes that caused sea-level oscillations during the Pleistocene. These marine transgressions and regressions can generate isolation and connection among coastal rivers. In this region, freshwater fishes are excellent models for phylogeographic studies because their distributions may have been affected by geographical and ecological changes resulting from these processes. Therefore, the main objective of this study was to evaluate the effects of Pleistocene sea-level changes on the genetic structure of the loricariid Hisonotus leucofrenatus throughout its area of occurrence. Two genes were sequenced: Cytochrome Oxidase subunit 1 (mitochondrial gene) and rpS7 ribosomal protein gene intron 1 (nuclear gene) from specimens representing 14 river drainages. The genetic data corroborate a divide for freshwater fish by the Serra do Tabuleiro mountain in Santa Catarina State. This divide determines two main genetic groups in H. leucofrenatus: one group to the south and one to the north of this mountain range. The genetic structure observed coincide with the limits of estimated paleodrainage systems for the region, supporting that marine transgressions and regressions during the Pleistocene influenced the biogeographical history of H. leucofrenatus.


2021 ◽  
Author(s):  
Sean James Buckley ◽  
Chris Brauer ◽  
Peter Unmack ◽  
Michael Hammer ◽  
Luciano B. Beheregaray

10.1029/ft354 ◽  
1989 ◽  
Author(s):  
John M. Dennison ◽  
Edwin J. Anderson ◽  
Jack D. Beuthin ◽  
Edward Cotter ◽  
Richard J. Diecchio ◽  
...  

Author(s):  
Nikolay Esin ◽  
Nikolay Esin ◽  
Vladimir Ocherednik ◽  
Vladimir Ocherednik

A mathematical model describing the change in the Black Sea level depending on the Aegean Sea level changes is presented in the article. Calculations have shown that the level of the Black Sea has been repeating the course of the Aegean Sea level for the last at least 6,000 years. And the level of the Black Sea above the Aegean Sea level in the tens of centimeters for this period of time.


Sign in / Sign up

Export Citation Format

Share Document