Estimation of total nitrogen and organic carbon contents in mine soils with NIR reflectance spectroscopy and various chemometric methods

Geoderma ◽  
2020 ◽  
Vol 368 ◽  
pp. 114306 ◽  
Author(s):  
Anna Pudełko ◽  
Marcin Chodak
2017 ◽  
Vol 97 (2) ◽  
pp. 241-248 ◽  
Author(s):  
P.T. Sorenson ◽  
C. Small ◽  
M.C. Tappert ◽  
S.A. Quideau ◽  
B. Drozdowski ◽  
...  

2019 ◽  
Author(s):  
Ping P Zhang ◽  
Yan L Zhang ◽  
Jun C Jia ◽  
Yong X Cui ◽  
Xia Wang ◽  
...  

Selecting optimal revegetation patterns, i.e., patterns that are more effective for soil organic carbon (SOC) and total nitrogen (TN) accumulation is particularly important for mine land reclamation. However, there have been few evaluations of the effects of different revegetation patterns on the SOC and TN in reclaimed mine soils on the Loess Plateau, China. In this study, the SOC and TN stocks were investigated at reclaimed mine sites (RMSs), including artificially revegetated sites (ARSs) (arbors [Ar], bushes [Bu], arbor-bush mixtures [AB], and grasslands [Gr]) and a natural recovery site (NRS), as well as at undisturbed native sites (UNSs). Overall, the SOC and TN stocks in the RMSs were lower than those in the UNSs over 10–13 years after reclamation. Except for those in Ar, the SOC and TN stocks in the ARSs were significantly larger than those in the NRS. Compared with those in the NRS, the total SOC stocks in the 100 cm soil interval increased by 51.4%, 59.9%, and 109.9% for Bu, AB, and Gr, respectively, and the TN stocks increased by 33.1%, 35.1%, and 57.9%. The SOC stocks in the 0 – 100 cm soil interval decreased in the order of Gr (3.78 kg m –2) > AB (2.88 kg m–2) ≥ Bu (2.72 kg m–2), and the TN stocks exhibited a similar trend. These results suggest that grasslands were more favorable than woodlands for SOC and TN accumulation in this arid area, especially in Ar. Thus, in terms of the accumulation of SOC and TN, grassland planting is recommended as a revegetation pattern for areas with reclaimed mine soils.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8563
Author(s):  
Ping Ping Zhang ◽  
Yan Le Zhang ◽  
Jun Chao Jia ◽  
Yong Xing Cui ◽  
Xia Wang ◽  
...  

Selecting optimal revegetation patterns, i.e., patterns that are more effective for soil organic carbon (SOC) and total nitrogen (TN) accumulation, is particularly important for mine land reclamation. However, there have been few evaluations of the effects of different revegetation patterns on the SOC and TN in reclaimed mine soils on the Loess Plateau, China. In this study, the SOC and TN stocks were investigated at reclaimed mine sites (RMSs), including artificially revegetated sites (ARSs) (arbors (Ar), bushes (Bu), arbor-bush mixtures (AB), and grasslands (Gr)) and a natural recovery site (NRS), as well as at undisturbed native sites (UNSs). Overall, the SOC and TN stocks in the RMSs were lower than those in the UNSs over 10–13 years after reclamation. The SOC stocks in the RMSs and UNSs only differed in the top 0–20 cm of the soil (p < 0.05). Except for those in Ar, the SOC and TN stocks in the ARSs were significantly larger than those in the NRS (p < 0.05). Compared with those in the NRS, the total SOC stocks in the 100 cm soil interval increased by 51.4%, 59.9%, and 109.9% for Bu, AB, and Gr, respectively, and the TN stocks increased by 33.1%, 35.1%, and 57.9%. The SOC stocks in the 0–100 cm soil interval decreased in the order of Gr (3.78 kg m−2) > AB (2.88 kg m−2) ≥ Bu (2.72 kg m−2), and the TN stocks exhibited a similar trend. These results suggest that grasslands were more favorable than woodlands for SOC and TN accumulation in this arid area. Thus, in terms of the accumulation of SOC and TN, grassland planting is recommended as a revegetation pattern for areas with reclaimed mine soils.


2001 ◽  
Vol 9 (2) ◽  
pp. 123-131 ◽  
Author(s):  
M. Confalonieri ◽  
F. Fornasier ◽  
A. Ursino ◽  
F. Boccardi ◽  
B. Pintus ◽  
...  

The feasibility of near infrared (NIR) reflectance spectroscopy in determining various soil constituents such as total organic carbon, total nitrogen, exchangeable potassium and available phosphorus has been investigated, to monitor their concentration during a long-term agronomic trial. Soil samples previously analysed by conventional chemical methods were scanned using a NIRSystems 5000 monochromator and spectra were treated using several algorithms. The first derivative of each NIR spectrum was used for all statistical analyses. Step-up, stepwise and modified partial least squares (MPLS) regression methods were applied to develop reliable calibration models between the NIR spectral data and the results of wet analyses. MPLS almost always gave the most successful calibrations. The results demonstrated that NIR reflectance spectroscopy can be used to determine accurately two important soil constituents, namely total nitrogen and carbon content. This technique could be employed as a routine testing method in estimating, rapidly and non-destructively, these constituents in soil samples, demonstrating soil variations within a long-term field experiment. For other determinations, such as exchangeable potassium and available phosphorus content, our results were less successful but may be useful for separation of samples into groups.


2019 ◽  
Author(s):  
Ping P Zhang ◽  
Yan L Zhang ◽  
Jun C Jia ◽  
Yong X Cui ◽  
Xia Wang ◽  
...  

Selecting optimal revegetation patterns, i.e., patterns that are more effective for soil organic carbon (SOC) and total nitrogen (TN) accumulation is particularly important for mine land reclamation. However, there have been few evaluations of the effects of different revegetation patterns on the SOC and TN in reclaimed mine soils on the Loess Plateau, China. In this study, the SOC and TN stocks were investigated at reclaimed mine sites (RMSs), including artificially revegetated sites (ARSs) (arbors [Ar], bushes [Bu], arbor-bush mixtures [AB], and grasslands [Gr]) and a natural recovery site (NRS), as well as at undisturbed native sites (UNSs). Overall, the SOC and TN stocks in the RMSs were lower than those in the UNSs over 10–13 years after reclamation. Except for those in Ar, the SOC and TN stocks in the ARSs were significantly larger than those in the NRS. Compared with those in the NRS, the total SOC stocks in the 100 cm soil interval increased by 51.4%, 59.9%, and 109.9% for Bu, AB, and Gr, respectively, and the TN stocks increased by 33.1%, 35.1%, and 57.9%. The SOC stocks in the 0 – 100 cm soil interval decreased in the order of Gr (3.78 kg m –2) > AB (2.88 kg m–2) ≥ Bu (2.72 kg m–2), and the TN stocks exhibited a similar trend. These results suggest that grasslands were more favorable than woodlands for SOC and TN accumulation in this arid area, especially in Ar. Thus, in terms of the accumulation of SOC and TN, grassland planting is recommended as a revegetation pattern for areas with reclaimed mine soils.


Author(s):  
B. P. Mondal ◽  
B. S. Sekhon ◽  
R. N. Sahoo ◽  
P. Paul

<p><strong>Abstract.</strong> Soil organic carbon (SOC) is a crucial indicator of soil fertility, maintaining soil health and sustaining the productivity of agro-ecosystem. Rapid, reliable and cost effective assessment of soil properties specially for SOC is important for monitoring soil fertility status along with soil health. Conventional chemical analysis of any soil property is hazardous, tedious and time consuming. So, the visible near infrared (VIS-NIR) reflectance spectroscopy can provide an effective alternative technique for rapid and ecofriendly measurement of soil properties. In view of this, a key soil fertility parameter SOC was examined through diffuse reflectance spectroscopy. Georeferenced surface soil samples (0&amp;ndash;15&amp;thinsp;cm) were collected from a rice-wheat field of the study area for both chemical and spectral analysis. A viable statistical technique namely partial least square regression (PLSR) technique were used to correlate the measured properties with soil reflectance spectra and for developing spectral model. The predictive performance of newly developed spectral model was evaluated through different reliable indices like root mean square of error of prediction (RMSEP), coefficient of determination (R<sup>2</sup>) and ratio of performance deviation (RPD). The result showed that the R<sup>2</sup> value for SOC is 0.44, RMSEP is 0.07 and the RPD value is 1.57 in the validation dataset. The RPD value indicating that SOC can be reliably predicted using the hyperspectral model or reflectance analysis. So, this hyperspectral modeling technique can be successfully employed for monitoring soil health as well as for sustainable agriculture.</p>


Sign in / Sign up

Export Citation Format

Share Document