mine sites
Recently Published Documents


TOTAL DOCUMENTS

443
(FIVE YEARS 108)

H-INDEX

32
(FIVE YEARS 4)

Author(s):  
Shaosen Ma ◽  
Guangping Huang ◽  
Khaled Obaia ◽  
Soon Won Moon ◽  
Wei Victor Liu

The objective of this study was to develop a novel phenomenological model that can predict the hysteresis loss of rubber compounds obtained from ultra-large off-the-road (OTR) tires under typical operating conditions at mine sites. To achieve this, first, cyclic tensile tests were conducted on tire tread compounds to derive the experimental results of hysteresis curves, peak stress, residual strain, and hysteresis loss at 6 strain levels, 8 strain rates, and 14 rubber temperatures. Then, referring to these experimental results, a phenomenological model was developed – the HLSRT model (a hysteresis loss model considering strain levels, strain rates, and rubber temperatures). This HLSRT model was generated based on a novel strain energy function that was modified from the traditional Mooney-Rivlin (MR) function, and the model was used to predict the hysteresis loss of rubber compounds in OTR tires. The prediction results show that the HLSRT model estimated the hysteresis loss of tire tread compounds with average and maximum mean absolute percent errors (MAPEs) of 11.2% and 18.6%, respectively, at strain levels ranging from 10% to 100%, strain rates from 10% to 500% s−1, and rubber temperatures from −30°C to 100°C. These MAPEs were relatively low when compared with previous studies, showing that the HLSRT model has higher prediction accuracy. For the first time, the HLSRT model derived from this study has provided a new approach to predicting the hysteresis loss of OTR tire rubbers to guide the use of OTR tires in truck haulage at mine sites.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hiroyuki Kamachi ◽  
Kazunori Morishita ◽  
Manami Hatta ◽  
Ayaka Okamoto ◽  
Kazuma Fujii ◽  
...  

The fern Athyrium yokoscense often flourishes around mine sites in Japan and can tolerate and accumulate heavy metals such as lead (Pb) and cadmium (Cd). In this work, we examined whether proanthocyanidins, also called condensed tannins, were involved in the mechanisms of Pb and Cd tolerance and accumulation of A. yokoscense because proanthocyanidins are known to alleviate metal stress in several plant species and are present at high levels in A. yokoscense. For this purpose, we used mutant gametophytes deficient in proanthocyanidins, in which the relative proanthocyanidin contents were 20% of those of the wild-type gametophytes. Although the proanthocyanidin contents of the mutant were quite low, the growth of the mutant was very similar to that of the wild-type gametophytes even in the presence of 80 mg/kg Pb or 48 mg/kg Cd. Under the same conditions, the mutant gametophytes also accumulated Pb and Cd as much as the wild-type gametophytes did. These results indicate that the proanthocyanidins in A. yokoscense are not important for the Pb and Cd tolerance and accumulation properties.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 63
Author(s):  
Amisalu Milkias Misebo ◽  
Marcin Pietrzykowski ◽  
Bartłomiej Woś

Mining activities are one of the main causes of land degradation around the world and reduce the quality of the surrounding ecosystems. Restoration approaches using different vegetations and reclamation methods have been implemented to address this issue. In this review, paper, different studies focusing on the effect of the restoration of mining sites on the accumulation of soil organic carbon (SOC) were analyzed. SOC in reclaimed mining soil (RMS) increased considerably after various restoration efforts were implemented. The amount of SOC accumulated in RMS was mostly influenced by the restoration age, vegetation type, and substrate or type of reclamation used. From the scientific papers analyzed, we found that SOC accumulation increases with restoration age; however, vegetation type and reclamation have varied effects. According to the review, the restoration of mine sites with vegetation resulted in a rate of SOC accumulation ranging from 0.37 to 5.68 Mg SOC ha−1 year−1. Climate conditions influenced the type of vegetation used for restoration. Regrading, liming, NPK fertilization, and seeding a mix of legumes and grasses were the most efficient reclamation techniques. Additionally, the use of grass and legume better facilitates the early accumulation of SOC compared with afforestation. Thus, the selection of appropriate tree species composition, reclamation treatments, and restoration age are the key factors for a high SOC accumulation rate.


Diversity ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 13
Author(s):  
Pavla Vachova ◽  
Marek Vach ◽  
Milan Skalicky ◽  
Alena Walmsley ◽  
Martin Berka ◽  
...  

The relationship between vegetation and selected soil characteristics in different monoculture forest types was investigated as part of a landscape restoration project after brown coal mining. Six forest types were selected: alder (Alnus sp.), spruce (Picea sp.), pine (Pinus sp.), larch (Larix sp.), long-term deciduous forest (Quercus robur, Tilia sp.), and forest created by spontaneous succession. These stands were classified into two age categories (younger and older). The soil attributes, C/N, TC, TN, pH, and A horizon depth were assessed. The observed species were categorized into functional groups by life history, life forms according to Raunkiær, and affinity to the forest environment. C/N ratio, humus thickness, and canopy cover were the main soil parameters affecting plant communities. The highest C/N values were recorded in Pinus and Larix stands, which were significantly different from deciduous and succession stands. The highest diversity index was noted in younger stands of Alnus and the lowest in younger stands of Picea. Intermediate values of the diversity index were achieved in successional stands at both age levels and in Larix and Alnus stands. The species belonging to a functional group was not an important factor in these habitat types. The species composition and vegetation change over time in the Alnus, long-life deciduous, and Larix stands show that these species are more suitable for forestry reclamation than spruce or pine. The study also emphasizes the great value of spontaneous succession areas as full-fledged alternatives to forestry reclamation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Désirée Ruppen ◽  
Owen A. Chituri ◽  
Maideyi L. Meck ◽  
Numa Pfenninger ◽  
Bernhard Wehrli

Although mining and mineral processing are vital for many economies in the Global South, they are associated with enormous challenges of managing potentially devastating environmental impacts. In contexts where environmental oversight agencies often lack financial and personal capacities to fulfill their role, community-based monitoring might be a valid alternative to monitor potential environmental impacts. In this study, we present the setup and the implementation of a citizen science project to monitor water quality parameters in a river downstream of a coal mining area in Hwange, Western Zimbabwe. In a joint effort over 1.5 years, community monitors and scientists took close to 800 water samples in the Deka River and effluent channels. The data allowed identifying sources of pollution and relating these to past and present mining activities. The primary source of acid mine drainage came from abandoned underground mine sites. Illegal mine water dumping from active mine sites accentuated the problem and resulted in fish kills and food risks for the local population. Concentrations of manganese, nickel and arsenic were exceeding national fresh water guidelines and international drinking water standards. Manganese concentrations exceeded guidelines by a factor of 70 resulting in a public health risk. In this study, we showed that community-based monitoring offers a promising approach to establish a high-quality dataset for assessing mining-related risks if the implementation of sampling protocols is followed tightly. The monitoring scheme significantly improves the collection and interpretation of water quality data in challenging contexts where governmental institutions and industrial players are not enforcing environmental standards.


2021 ◽  
Author(s):  
Ali Soofastaei ◽  
Milad Fouladgar

This chapter demonstrates the practical application of artificial intelligence (AI) to improve energy efficiency in surface mines. The suggested AI approach has been applied in two different mine sites in Australia and Iran, and the achieved results have been promising. Mobile equipment in mine sites consumes a massive amount of energy, and the main part of this energy is provided by diesel. The critical diesel consumers in surface mines are haul trucks, the huge machines that move mine materials in the mine sites. There are many effective parameters on haul trucks’ fuel consumption. AI models can help mine managers to predict and minimize haul truck energy consumption and consequently reduce the greenhouse gas emission generated by these trucks. This chapter presents a practical and validated AI approach to optimize three key parameters, including truck speed and payload and the total haul road resistance to minimize haul truck fuel consumption in surface mines. The results of the developed AI model for two mine sites have been presented in this chapter. The model increased the energy efficiency of mostly used trucks in surface mining, Caterpillar 793D and Komatsu HD785. The results show the trucks’ fuel consumption reduction between 9 and 12%.


2021 ◽  
Author(s):  
Justin M. Valliere ◽  
Haylee M. D’Agui ◽  
Kingsley W. Dixon ◽  
Paul G. Nevill ◽  
Wei San Wong ◽  
...  

Abstract Purpose Biotic and abiotic properties of soils can hinder or facilitate ecological restoration, and management practices that impact edaphic factors can strongly influence plant growth and restoration outcomes. Salvaged topsoil is an invaluable resource for mine-site restoration, and a common practice is topsoil transfer from mined areas to restoration sites. However, direct transfer is often not feasible, necessitating storage in stockpiles. We evaluated the effects of topsoil stockpiling on plant performance across diverse ecosystems impacted by mining throughout Western Australia. Methods We conducted a bioassay experiment using a widespread native Acacia species to assess how topsoil storage might impact plant growth, physiology, and nodulation by N-fixing bacteria using soils from native reference vegetation and stockpiled soils from six mine sites across Western Australia. Results Plant responses varied across mine sites, but overall plants performed better in soils collected from native vegetation, exhibiting greater biomass, more root nodules, and higher water-use efficiency compared to those grown in stockpiled soils. Soil physiochemistry showed few and minor differences between native soils and stockpiles. Conclusion Results strongly suggest observed differences in plant performance were biotic in nature. This study highlights the negative effects of topsoil storage on the biological integrity of soil across diverse ecosystems, with important implications for mine-site restoration; our results show that topsoil management can strongly influence plant performance, and stockpiled soils are likely inferior to recently disturbed topsoil for restoration purposes. We also use this study to illustrate the utility of bioassays for assessing soil quality for ecological restoration.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 434
Author(s):  
Melissa Magno ◽  
Ingrid Luffman ◽  
Arpita Nandi

Inorganic contaminants, including potentially toxic metals (PTMs), originating from un-reclaimed abandoned mine areas may accumulate in soils and present significant distress to environmental and public health. The ability to generate realistic spatial distribution models of such contamination is important for risk assessment and remedial planning of sites where this has occurred. This study evaluated the prediction accuracy of optimized ordinary kriging compared to spatial regression-informed cokriging for PTMs (Zn, Mn, Cu, Pb, and Cd) in soils near abandoned mines in Bumpus Cove, Tennessee, USA. Cokriging variables and neighborhood sizes were systematically selected from prior statistical analyses based on the association with PTM transport and soil physico-chemical properties (soil texture, moisture content, bulk density, pH, cation exchange capacity (CEC), and total organic carbon (TOC)). A log transform was applied to fit the frequency histograms to a normal distribution. Superior models were chosen based on six diagnostics (ME, RMS, MES, RMSS, ASE, and ASE-RMS), which produced mixed results. Cokriging models were preferred for Mn, Zn, Cu, and Cd, whereas ordinary kriging yielded better model results for Pb. This study determined that the preliminary process of developing spatial regression models, thus enabling the selection of contributing soil properties, can improve the interpolation accuracy of PTMs in abandoned mine sites.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6468
Author(s):  
Madison Brandt ◽  
Deborah S. Page-Dumroese ◽  
Jackson Webster ◽  
Carrie Monohan

Mercury mining and its use in gold mine operations left a legacy of contamination in northern California. Contaminated sediments and water continue to affect local and downstream ecosystems. To assess the efficacy of biochar-amended soils on decreasing Hg transport, biochar was used to amend rock and sediment columns and mesocosms to decrease suspended sediment and associated mercury (Hg) in storm water runoff from Sierra Nevada hydraulic mines. Mercury-contaminated storm water runoff and hydraulic mine debris were collected from two hydraulic mine sites in the Yuba River, California watershed. Mercury concentrations and turbidity were analyzed from storm water samples and hydraulic mine debris in three simulated storm runoff experiments using decomposed granite columns, sediment columns, and sediment mesocosms amended at 0%, 2%, or 5% biochar by weight. Columns containing hydraulic mine debris and mixed with 5% biochar had a significant (p < 0.05) reduction in filter-passed mercury (FHg) in the outflow as compared to control columns. To simulate saturated hydraulic mine debris runoff, mesocosms were filled with mine sediment and saturated with deionized water to generate runoff. Five percent biochar in mesocosm trays decreased FHg significantly (p < 0.001), but, because of the angle of the tray, sediment also moved out of the trays. Biochar was effective at reducing FHg from hydraulic mine discharge. Biochar in laboratory columns with decomposed granite or mine sediments was more effective at removing Hg than mesocosms.


2021 ◽  
Vol 13 (19) ◽  
pp. 11011
Author(s):  
Kieran P. Young ◽  
Brad R. Murray ◽  
Leigh J. Martin ◽  
Megan L. Murray

Environmental databases play an essential role in the management of land and communities, including mapping and monitoring environmental hazards over time (i.e., abandoned mines). Over the last century, mines have closed for many reasons, but there has been no comprehensive database of the locations of closed and abandoned mine sites kept for many regions of the world. As such, the locations of many mines have been lost from public knowledge, with no way for managers to assess the risks of land and water contamination, as well as subsidence. To address this knowledge gap, we present an integrated framework for identifying abandoned mine sites using a combination of satellite imagery, historical records, geographic evidence, and local knowledge. We tested this framework within the Newcastle, Illawarra, and Lithgow regions of NSW, Australia. We identified 61 abandoned coal mines which are currently unaccounted for in mine registries, with 56% of all mines in the Newcastle region being unmarked (N = 32), 36% in the Illawarra region (N = 22), and 20% in the Lithgow region (N = 7). These findings demonstrate that our framework has promising utility in identifying historic and unmarked environmental hazards in both national and international contexts.


Sign in / Sign up

Export Citation Format

Share Document