Effects of canopy nitrogen addition on soil fauna and litter decomposition rate in a temperate forest and a subtropical forest

Geoderma ◽  
2021 ◽  
Vol 382 ◽  
pp. 114703
Author(s):  
Shengjie Liu ◽  
Jocelyn E. Behm ◽  
Shiqiang Wan ◽  
Junhua Yan ◽  
Qing Ye ◽  
...  
PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12747
Author(s):  
Peng Zan ◽  
Zijun Mao ◽  
Tao Sun

Litter quality and climate have been presumed to be the dominant factors regulating litter decomposition rates on broad spatial scales. However, the role of soil fauna on litter decomposition is poorly understood, despite the fact that it could strongly influence decomposition by fragmentation and subsequent modification of the activities of microorganisms.In this study, we carried out a meta-analysis on the effects of soil fauna on litter decomposition rates in Chinese forests, ranging from boreal to tropical forests, based on data from 20 studies. The effects of climatic factors on decomposition rate were assessed by comparing the contribution of soil fauna to litter decomposition from studies carried out at different latitudes.The degree of influence of the soil fauna was in the order tropical (200%) > subtropical (47%) > temperate forest (28%). Comparing the effect size of soil fauna, it was found that when soil fauna was excluded, the decomposition rate, calculated using Olson’s equation, was most affected in tropical forest (−0.77), while the litter decomposition rate both subtropical (−0.36) and temperate forest (−0.19) were also suppressed to varying degrees (P < 0.001). These results highlight that soil fauna could promote litter decomposition to different extents. Using stepwise multiple linear regression, the effect size of the soil fauna was negatively correlated with the cellulose and nitrogen concentrations of the initial litter material. In Chinese forests, litter decomposition rates were reduced, on average, by 65% when soil fauna was excluded. The impact of soil fauna on decomposition was shown to be closely related to climate and litter quality.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 338 ◽  
Author(s):  
Songze Wan ◽  
Zhanfeng Liu ◽  
Yuanqi Chen ◽  
Jie Zhao ◽  
Qin Ying ◽  
...  

Soil microorganisms play key roles in ecosystems and respond quickly to environmental changes. Liming and/or understory removal are important forest management practices and have been widely applied to planted forests in humid subtropical and tropical regions of the world. However, few studies have explored the impacts of lime application, understory removal, and their interactive effects on soil microbial communities. We conducted a lime application experiment combined with understory removal in a subtropical Eucalyptus L’Hér. plantation. Responses of soil microbial communities (indicated by phospholipid fatty acids, PLFAs), soil physico-chemical properties, and litter decomposition rate to lime and/or understory removal were measured. Lime application significantly decreased both fungal and bacterial PLFAs, causing declines in total PLFAs. Understory removal reduced the fungal PLFAs but had no effect on the bacterial PLFAs, leading to decreases in the total PLFAs and in the ratio of fungal to bacterial PLFAs. No interaction between lime application and understory removal on soil microbial community compositions was observed. Changes in soil microbial communities caused by lime application were mainly attributed to increases in soil pH and NO3–-N contents, while changes caused by understory removal were mainly due to the indirect effects on soil microclimate and the decreased soil dissolved carbon contents. Furthermore, both lime application and understory removal significantly reduced the litter decomposition rates, which indicates the lime application and understory removal may impact the microbe-mediated soil ecological process. Our results suggest that lime application may not be suitable for the management of subtropical Eucalyptus plantations. Likewise, understory vegetation helps to maintain soil microbial communities and litter decomposition rate; it should not be removed from Eucalyptus plantations.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Slamet Santosa ◽  
Muhamad Ruslan Umar ◽  
Dody Priosambodo ◽  
Rizki Amalia Puji Santosa

Teak Tectona grandis Linn is still used as the main product in the form of wood, while other products, especially environmental services have not received much attention. This study analyzed biomass, carbon stocks and decomposition rate of leaf litter in teak plantations in city forest of Hasanuudin University, Makassar. The individual biomass of teak plants is calculated using the allometric equation, Y=0.11x ρ x D2.62. Carbon stocks were analyzed using a formulation, C=0.47xB. The leaf litter decomposition rate is expressed as the ratio of the remaining litter dry weight, with the formulation, X= (A-B)/A. The number of teak plants in 5 sample plots were 239 trees with an average stem diameter of 20.6cm and an average height of 9.02m. Total biomass in 5 sample plots was 51,712.61g. Carbon stock in 5 sample plots was 24,304.92g. Decomposition rate average of leaf litter of 24.4g during 60 days incubation. The existence of teak plantations is able to reduce CO2 in the atmosphere by as much as 89,199.06gCO2 and resulting in a decomposition rate of teak leaf litter 0.4g per day


2020 ◽  
Vol 715 ◽  
pp. 136601 ◽  
Author(s):  
Osmarina A. Marinho ◽  
Luiz A. Martinelli ◽  
Paulo J. Duarte-Neto ◽  
Edmar A. Mazzi ◽  
Jennifer Y. King

Sign in / Sign up

Export Citation Format

Share Document