Variations in glomalin-related soil protein in Vicia faba rhizosphere depending upon interactions among mycorrhization, daytime and/or nighttime elevated CO2 levels

Geoderma ◽  
2021 ◽  
Vol 404 ◽  
pp. 115283
Author(s):  
Songmei Shi ◽  
Miao Wen ◽  
Xingshui Dong ◽  
Sharifullah Sharifi ◽  
Deti Xie ◽  
...  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Andrea Y Frommel ◽  
Justin Carless ◽  
Brian P V Hunt ◽  
Colin J Brauner

Abstract Pacific salmon stocks are in decline with climate change named as a contributing factor. The North Pacific coast of British Columbia is characterized by strong temporal and spatial heterogeneity in ocean conditions with upwelling events elevating CO2 levels up to 10-fold those of pre-industrial global averages. Early life stages of pink salmon have been shown to be affected by these CO2 levels, and juveniles naturally migrate through regions of high CO2 during the energetically costly phase of smoltification. To investigate the physiological response of out-migrating wild juvenile pink salmon to these naturally occurring elevated CO2 levels, we captured fish in Georgia Strait, British Columbia and transported them to a marine lab (Hakai Institute, Quadra Island) where fish were exposed to one of three CO2 levels (850, 1500 and 2000 μatm CO2) for 2 weeks. At ½, 1 and 2 weeks of exposure, we measured their weight and length to calculate condition factor (Fulton’s K), as well as haematocrit and plasma [Cl−]. At each of these times, two additional stressors were imposed (hypoxia and temperature) to provide further insight into their physiological condition. Juvenile pink salmon were largely robust to elevated CO2 concentrations up to 2000 μatm CO2, with no mortality or change in condition factor over the 2-week exposure duration. After 1 week of exposure, temperature and hypoxia tolerance were significantly reduced in high CO2, an effect that did not persist to 2 weeks of exposure. Haematocrit was increased by 20% after 2 weeks in the CO2 treatments relative to the initial measurements, while plasma [Cl−] was not significantly different. Taken together, these data indicate that juvenile pink salmon are quite resilient to naturally occurring high CO2 levels during their ocean outmigration.


Author(s):  
Wenchao Du ◽  
Meiling Xu ◽  
Ying Yin ◽  
Yuanyuan Sun ◽  
Jichun Wu ◽  
...  

2013 ◽  
Vol 70 (4) ◽  
pp. 812-822 ◽  
Author(s):  
Thomas P. Hurst ◽  
Elena R. Fernandez ◽  
Jeremy T. Mathis

Abstract Hurst, T. P., Fernandez, E. R., and Mathis, J. T. 2013. Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). – ICES Journal of Marine Science, 70: 812–822. Rising atmospheric concentrations of CO2 are predicted to decrease the pH of high-latitude oceans by 0.3–0.5 units by 2100. Because of their limited capacity for ion exchange, embryos and larvae of marine fishes are predicted to be more sensitive to elevated CO2 than juveniles and adults. Eggs and larvae of walleye pollock (Theragra chalcogramma) were incubated across a broad range of CO2 levels (280–2100 µatm) to evaluate sensitivity in this critical resource species. Slightly elevated CO2 levels (∼450 µatm) resulted in earlier hatching times, but differences among egg batches were greater than those observed across CO2 treatments. Egg batches differed significantly in size-at-hatch metrics, but we observed no consistent effect of CO2 level. In three independent experiments, walleye pollock were reared at ambient and elevated CO2 levels through the early larval stage (to ∼30 days post-hatch). Across trials, there were only minor effects of CO2 level on size and growth rate, but fish in the ambient treatments tended to be slightly smaller than fish reared at elevated CO2 levels. These results suggest that growth potential of early life stages of walleye pollock is resilient with respect to the direct physiological effects of ocean acidification.


2009 ◽  
Vol 6 (1) ◽  
pp. 25-31 ◽  
Author(s):  
S. Sharma ◽  
D. G. Williams

Abstract. In this study we explore the use of natural CO2 emissions in Yellowstone National Park (YNP) in Wyoming, USA to study responses of natural vegetation to elevated CO2 levels. Radiocarbon (14C) analysis of leaf biomass from a conifer (Pinus contortus; lodgepole pine) and an invasive, non-native herb (Linaria dalmatica; Dalmation toadflax) was used to trace the inputs of vent CO2 and quantify assimilation-weighted CO2 concentrations experienced by individual plants near vents and in comparable locations with no geologic CO2 exposure. The carbon and oxygen isotopic composition and nitrogen percent of leaf biomass from the same plants was used to investigate photosynthetic responses of these plants to naturally elevated atmospheric CO2 concentrations. The coupled shifts in carbon and oxygen isotope values suggest that dalmation toadflax responded to elevated CO2 exposure by increasing stomatal conductance with no change in photosynthetic capacity and lodgepole pine apparently responded by decreasing stomatal conductance and photosynthetic capacity. Lodgepole pine saplings exposed to elevated levels of CO2 likewise had reduced leaf nitrogen concentrations compared to plants with no enhanced CO2 exposure, further suggesting widespread and dominant conifer down-regulated photosynthetic capacity under elevated CO2 levels near geologic vents.


Nature ◽  
2008 ◽  
Vol 453 (7194) ◽  
pp. 504-506 ◽  
Author(s):  
Huiming Bao ◽  
J. R. Lyons ◽  
Chuanming Zhou

2011 ◽  
Vol 108 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Masahiro Tamoi ◽  
Yoshie Hiramatsu ◽  
Shigeki Nedachi ◽  
Kumi Otori ◽  
Noriaki Tanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document