Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix–Baza basin, SE Spain)

Geomorphology ◽  
2009 ◽  
Vol 106 (3-4) ◽  
pp. 206-218 ◽  
Author(s):  
José Vicente Pérez-Peña ◽  
José Miguel Azañón ◽  
Antonio Azor ◽  
Paola Tuccimei ◽  
Marta Della Seta ◽  
...  
Geomorphology ◽  
2012 ◽  
Vol 171-172 ◽  
pp. 204-209
Author(s):  
José Vicente Pérez-Peña ◽  
José Miguel Azañón ◽  
Antonio Azor ◽  
Isabel María Sánchez-Almazo ◽  
Paola Tuccimei ◽  
...  

2021 ◽  
pp. 100030
Author(s):  
D. Wolf ◽  
F.J. García-Tortosa ◽  
C. Richter ◽  
J. Dabkowski ◽  
C. Roettig ◽  
...  

2021 ◽  
Author(s):  
Emma Lodes ◽  
Dirk Scherler ◽  
Hella Wittmann ◽  
Renee Van Dongen

<p>Rock fracturing induced by tectonic deformation is thought to promote faster denudation in more highly fractured areas by lowering grain size and directing the flow of water. That the density and pattern of fractures in a landscape play a role in controlling erosion and landscape evolution has been known for over a century, but not until recently do we have tools, like cosmogenic nuclides, to quantify erosion rates in places with varying fracture densities. In the Nahuelbuta Range in south-central Chile, we observed that >30-m thick regolith exists next to patches of unweathered bedrock. We hypothesize that the density of fractures dictates the pace and patterns of chemical weathering, regolith conversion, and erosion in the Nahuelbuta Range. To test this, we used in situ cosmogenic <sup>10</sup>Be to obtain denudation rates from amalgamated samples of bedrock, corestones and soils, and measured fracture density and orientation, as well as hillslope boulder size in several sites in the Nahuelbuta Range. We found that more highly fractured areas indeed have higher denudation rates than less fractured areas, and that bedrock denudation rates are ~10 m/Myr while soil denudation rates are ~30 m/Myr, suggesting that soil-covered areas may be sites of higher fracture density at depth. Fractures have orientations that match mapped faults across the Nahuelbuta range, and thus are considered to be tectonically-induced. In addition, both fracture and fault orientations match the orientation of streams incising the range, suggesting that fractures control stream channel orientation by weakening bedrock and thus directing flow.</p>


2015 ◽  
Vol 3 (4) ◽  
pp. 463-482 ◽  
Author(s):  
D. L. Egholm ◽  
J. L. Andersen ◽  
M. F. Knudsen ◽  
J. D. Jansen ◽  
S. B. Nielsen

Abstract. There is growing recognition of strong periglacial control on bedrock erosion in mountain landscapes, including the shaping of low-relief surfaces at high elevations (summit flats). But, as yet, the hypothesis that frost action was crucial to the assumed Late Cenozoic rise in erosion rates remains compelling and untested. Here we present a landscape evolution model incorporating two key periglacial processes – regolith production via frost cracking and sediment transport via frost creep – which together are harnessed to variations in temperature and the evolving thickness of sediment cover. Our computational experiments time-integrate the contribution of frost action to shaping mountain topography over million-year timescales, with the primary and highly reproducible outcome being the development of flattish or gently convex summit flats. A simple scaling of temperature to marine δ18O records spanning the past 14 Myr indicates that the highest summit flats in mid- to high-latitude mountains may have formed via frost action prior to the Quaternary. We suggest that deep cooling in the Quaternary accelerated mechanical weathering globally by significantly expanding the area subject to frost. Further, the inclusion of subglacial erosion alongside periglacial processes in our computational experiments points to alpine glaciers increasing the long-term efficiency of frost-driven erosion by steepening hillslopes.


2005 ◽  
Vol 16 (6) ◽  
pp. 517-528 ◽  
Author(s):  
C. Boix-Fayos ◽  
M. Martínez-Mena ◽  
A. Calvo-Cases ◽  
V. Castillo ◽  
J. Albaladejo

2020 ◽  
Author(s):  
Elco Luijendijk

<p>The role of groundwater flow in determining overland flow, drainage density and landscape evolution has long been debated. Landscape models often only address groundwater as a simplified storage term and do not explicitly include lateral groundwater flow, although recently some model codes have started to include lateral flow. However, the role of groundwater flow on landscape evolution has not been explored systematically to my knowledge. Here I present a new numerical and analytical model that combines groundwater flow, saturation overland flow, hillslope diffusion and stream erosion. A number of model experiments were run with different values of transmissivity and groundwater recharge. The model results demonstrate that transmissivity, groundwater flow and the depth of the watertable strongly govern overland flow, the incision of stream channels and erosion rates. The results imply that the permeability and transmissivity of the subsurface are important parameters for explaining and modelling landscape evolution.  </p>


2020 ◽  
Author(s):  
Valeria Zavala ◽  
Sebastien Carretier ◽  
Vincent Regard ◽  
Stephane Bonnet ◽  
Rodrigo Riquelme ◽  
...  

<p>The downstream increase in valley width is an important feature of fluvial landscapes that may be evident to anyone: even if local exceptions exist, wide fluvial valleys in plains are distinctive of narrow upstream mountainous ones. Yet, the processes and rates governing along-stream valley widening over timescales characteristic of landscape development (>1-10 ka) are largely unknown. No suitable law exists in landscape evolution models, thus models imperfectly reproduce the landscape evolution at geological timescales, their rates of erosion and probably their response to tectonics and climate. Here, we study two 1 km-deep canyons in northern Chile with diachronous incision initiation, thus representing two time-stage evolutions of a similar geomorphic system characterized by valley widening following the upward migration of a major knickzone. We use 10Be cosmogenic isotope concentrations measured in colluvial deposits at the foot of hillslopes to quantify along-stream valley flank erosion rates. We observe that valley flank erosion rate increases quasi-linearly with valley-bed slope and decreases non-linearly with valley width. This relation suggests that lateral erosion increases with sediment flux due to higher channel mobility. In turn, valley width exerts a negative feedback on lateral valley flank erosion since channels in wide valleys have a lower probability of eroding the valley sides. This implies a major control of river divagation on valley flank erosion rate and valley widening. Our study provides the first data for understanding the long-term processes and rates governing valley widening in landscapes.</p>


2015 ◽  
Vol 30 ◽  
pp. 100-113 ◽  
Author(s):  
Mads Faurschou Knudsen ◽  
David L. Egholm ◽  
Bo Holm Jacobsen ◽  
Nicolaj Krog Larsen ◽  
John D. Jansen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document