sediment cover
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 33)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 42 (1) ◽  
Author(s):  
Andreas Wittke ◽  
Nikolaus Gussone ◽  
Dominik Derigs ◽  
Barbara M. A. Teichert

AbstractFluid flow and carbonate recrystallization rates of deep-sea sediments from eight locations in the Equatorial Eastern Pacific were determined by using δ44/40Ca values of pore water and corresponding sediments. The studied drill sites of IODP Exp. 320/321 are located along a transect of decreasing crustal age and reveal different characteristic pore water depth profiles. The younger sites show an overall isotopic equilibration with the sediment in the upper part of the sedimentary column. In the lower part, the δ44/40Ca of the pore water increases back to seawater-like values at the sediment/basalt interface, forming a bulge-shaped pore water profile. The magnitude of the δ44/40Ca pore water bulge decreases with increasing age of the oceanic crust and sediment cover, resulting in seawater-like δ44/40Ca values throughout the sedimentary column in the oldest Sites U1331 and U1332. These findings indicate a seawater-like fluid input from the underlying crust into the sediment. Thus, after sedimentation, carbonate recrystallization processes start to enrich the pore water in 40Ca, and after a time of carbonate recrystallization and cooling of oceanic crust, a flow of seawater-like fluid starts to move upwards through the sedimentary column, enriching the pore water with 44Ca. We established a carbonate recrystallization and fluid flow model to quantify these processes. Our determined carbonate recrystallization rates between 0.000013e(−t/15.5) and 0.00038e(−t/100.5) and fluid flow rates in the range of 0.42–19 m*Myr−1 indicate that the fluid flow within the investigated sites of IODP Exp. 320/321 depends on the sedimentary composition and location of the specific site, especially the proximity to a recharge or discharge site of a hydrothermal convection cell.


Author(s):  
Linus Klug ◽  
Nikolaus Froitzheim

AbstractThe Ötztal Nappe in the Eastern Alps is a thrust sheet of Variscan metamorphic basement rocks and their Mesozoic sediment cover. It has been argued that the main part of the Ötztal Nappe and its southeastern part, the Texel Complex, belong to two different Austroalpine nappe systems and are separated by a major tectonic contact. Different locations have been proposed for this boundary. We use microprobe mapping of garnet and structural field geology to test the hypothesis of such a tectonic separation. The Pre-Mesozoic rocks in the area include several lithotectonic units: Ötztal Complex s.str., Texel Complex, Laas Complex, Schneeberg Complex, and Schneeberg Frame Zone. With the exception of the Schneeberg Complex which contains only single-phased (Eoalpine, i.e. Late Cretaceous) garnet, all these units have two-phased garnet with Variscan cores and Eoalpine rims. The Schneeberg Complex represents Paleozoic sediments with only low-grade (sub-garnet-grade) Variscan metamorphism which was thrust over the other units and their Mesozoic cover (Brenner Mesozoic) during an early stage of the Eoalpine orogeny, before the peak of Eoalpine metamorphism and garnet growth. Folding of the thrust later modified the structural setting so that the Schneeberg Thrust was locally inverted and the Schneeberg Complex came to lie under the Ötztal Complex s.str. The hypothesized Ötztal/Texel boundaries of earlier authors either cut across undisturbed lithological layering or are unsupported by any structural evidence. Our results support the existence of one coherent Ötztal Nappe, including the Texel Complex, and showing a southeastward increase of Eoalpine metamorphism which resulted from southeastward subduction.


2021 ◽  
Vol 1 (3) ◽  
pp. 130-137
Author(s):  
Alastair Ruffell ◽  
Neil Powell

The aqueous search for objects covered by sediment is a common and challenging problem. Here we outline a sequential methodology for the assessment of targets identified by sub-bottom profiling. This comprises desktop study of available data; background hydrological information gathering (bathymetry, sediment cover, water chemistry); acoustic sub-bottom imaging (water-penetrating radar, sonar); geolocation and probing of sub-bottom anomalies; and deployment of suitable scent dogs. This procedure creates a hierarchy of targets for examination by dive teams and thence recovery.


2021 ◽  
Author(s):  
Aristeidis Varis ◽  
Christopher Miller ◽  
Patrick Cuthbertson ◽  
Abay Namen ◽  
Zhaken Taimagambetov ◽  
...  

Central Asian caves with Palaeolithic deposits are few but they provide a rich record of human fossils and cultural assemblages that has been used to model Late Pleistocene hominin dispersals. However, previous research has not yet systematically evaluated the formation processes that influence the frequency of Palaeolithic cave sites in the region. To address this deficiency, we combined field survey and micromorphological analyses in the piedmont zone of south Kazakhstan. Here we present our preliminary results focusing on selected sites of the Qaratau mountains. Sediment cover varies among the surveyed caves and loess-like sediments dominate the cave sequences. The preservation of cave deposits is influenced by reworking of cave sediments within the caves but also by the broader erosional processes that shape semi-arid landscapes. Ultimately, deposits of potentially Pleistocene age are scarce. Our study provides new data in the geoarchaeologically neglected region of Central Asia and demonstrates that micromorphology has great analytical potential even within the limitations of rigorous survey projects. We outline some of the processes that influence the formation and preservation of cave deposits inKazakhstan, as well as broader implications for the distribution of Palaeolithic cave sites in Central Asia and other semi-arid environments.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yu Zhang ◽  
Jianzhong Huang ◽  
Xinke Li ◽  
Cuiping Song ◽  
Jingquan Xia ◽  
...  

Human activities beyond ecosystem capacity have resulted in serious effects on corals worldwide. Nowadays, many studies have focused on the influence of diving activities on coral communities, while the knowledge of physiological changes under corresponding environmental stresses remains largely undetermined. In the study, we aimed to investigate the physiological effects of touching, ammonia nitrogen enrichment (5 μmol⋅L–1), and sediment cover (particle size of less than 0.3 mm), which simulated improper self-contained underwater breathing apparatus (SCUBA) diving behaviors, on Acropora hyacinthus and Porites cylindrica in Wuzhizhou Island, the South China Sea. For A. hyacinthus, continuous touching caused the tentacles to shrink and secrete mucus, which consumed energy and dissolved oxygen. The skeletal growth rate was decreased by 72% compared with the control group. There was a rapid decline of Fv/Fm and alpha under the dual impacts of high ammonia nitrogen and touching, while the Chl a concentration and tissue biomass were decreased by 36 and 28% compared with touching alone, respectively. High ammonia nitrogen and touching increased the concentrations of lipid and protein. Nevertheless, zooxanthellae density was increased by 23% to relieve the effects of a lower concentration of Chl a in a high nutrient environment. Constant touching and sediment cover in diving areas with elevated ammonia content affected the photosynthesis and respiration of corals, and a significant decrease was observed for lipid, zooxanthellae density, and Chl a concentration. Coral bleaching occurred on day 7. For P. cylindrica, the decreasing magnitude of Fv/Fm and alpha under different stresses in the subsequent phase was less compared with A. hyacinthus. The contents of carbohydrate and protein under continuous touching were decreased by 7 and 15% compared with the control group, respectively, causing negative growth. Under the dual influences of high ammonia nitrogen and continuous touching, all energy reserves were significantly lower. Repeated touching and sediment cover in diving areas containing high ammonia content increased the concentrations of lipid and protein compared with the touching and high nutrient treatment group likely because that Porites associated with C15 zooxanthella increased heterotrophic feeding to compensate for restricted symbiodiniaceae photosynthesis. Additionally, P. cylindrica produced mucus to aid the removal of sediment, so that corals didn’t obviously bleach during the experiment. Collectively, P. cylindrica was more resistant to diving activities than A. hyacinthus which only relies on photoautotrophy. To ensure the sustainable development of coral reef dive tourism, it is necessary to strengthen the supervision of diving behaviors, rotate the diving areas, and conduct regular assessments on the coral status.


Geology ◽  
2021 ◽  
Author(s):  
Clarke DeLisle ◽  
Brian J. Yanites ◽  
Chia-Yu Chen ◽  
Bruce H. Shyu ◽  
Tammy M. Rittenour

In most landscape evolution models, extreme rainfall enhances river incision. In steep landscapes, however, these events trigger landslides that can buffer incision via increased sediment delivery and aggradation. We quantify landslide sediment aggradation and erosional buffering with a natural experiment in southern Taiwan where a northward gradient in tectonic activity drives increasing landscape steepness. We find that landscape response to extreme rainfall during the 2009 typhoon Morakot varied along this gradient, where steep areas experienced widespread channel sediment aggradation of >10 m and less steep areas did not noticeably aggrade. We model sediment export to estimate a sediment removal timeline and find that steep, tectonically active areas with the most aggradation may take centuries to resume bedrock incision. Expected sediment cover duration reflects tectonic uplift. We find that despite high stream power, sediment cover may keep steep channels from eroding bedrock for up to half of a given time period. This work highlights the importance of dynamic sediment cover in landscape evolution and suggests a mechanism by which erosional efficiency in tectonically active landscapes may decrease as landscape steepness increases.


2021 ◽  
Vol 9 (5) ◽  
pp. 1111-1123
Author(s):  
Rose V. Palermo ◽  
Anastasia Piliouras ◽  
Travis E. Swanson ◽  
Andrew D. Ashton ◽  
David Mohrig

Abstract. Coastal cliff erosion is alongshore-variable and episodic, with retreat rates that depend upon sediment as either tools of abrasion or protective cover. However, the feedbacks between coastal cliff planform morphology, retreat rate, and sediment cover are poorly quantified. This study investigates Sargent Beach, Texas, USA, at the annual to interannual scale to explore (1) the relationship between temporal and spatial variability in cliff retreat rate, roughness, and sinuosity and (2) the response of retreat rate and roughness to changes in sand and shell hash cover of the underlying mud substrate as well as the impact of major storms using field measurements of sediment cover, erosion, and aerial images to measure shore platform morphology and retreat. A storm event in 2009 increased the planform roughness and sinuosity of the coastal cliff at Sargent Beach. Following the storm, aerial-image-derived shorelines with annual resolution show a decrease in average alongshore erosion rates from 12 to 4 m yr−1, coincident with a decrease in shoreline roughness and sinuosity (smoothing). Like the previous storm, a storm event in 2017 increased the planform roughness and sinuosity of the cliff. Over shorter timescales, monthly retreat of the sea cliff occurred only when the platform was sparsely covered with sediment cover on the shore platform, indicating that the tools and cover effects can significantly affect short-term erosion rates. The timescale to return to a smooth shoreline following a storm or roughening event, given a steady-state erosion rate, is approximately 24 years, with the long-term rate suggesting a maximum of ∼107 years until Sargent Beach breaches, compromising the Gulf Intracoastal Waterway (GIWW) under current conditions and assuming no future storms or intervention. The observed retreat rate varies, both spatially and temporally, with cliff face morphology, demonstrating the importance of multi-scale measurements and analysis for interpretation of coastal processes and patterns of cliff retreat.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2280
Author(s):  
Andrei Dornik ◽  
Mihaela Constanța Ion ◽  
Marinela Adriana Chețan ◽  
Lucian Pârvulescu

One of the most critical challenges in species distribution modelling is testing and validating various digitally derived environmental predictors (e.g., remote-sensing variables, topographic variables) by field data. Therefore, here we aimed to explore the value of soil properties in the spatial distribution of four European indigenous crayfish species. A database with 473 presence and absence locations in Romania for Austropotamobius bihariensis, A. torrentium, Astacus astacus and Pontastacus leptodactylus was used in relation to eight digitalised soil properties. Using random forest modelling, we found a preference for dense soils with lower coarse fragments content together with deeper sediment cover and higher clay values for A. astacus and P. leptodactylus. These descriptors trigger the need for cohesive soil river banks as the microenvironment for building their burrows. Conversely, species that can use banks with higher coarse fragments content, the highland species A. bihariensis and A. torrentium, prefer soils with slightly thinner sediment cover and lower density while not influenced by clay/sand content. Of all species, A. astacus was found related with higher erosive soils. The value of these soil-related digital descriptors may reside in the improvement of approaches in crayfish species distribution modelling to gain adequate conservation measures.


2021 ◽  
Vol 2 ◽  
Author(s):  
Sasha. Z. Leidman ◽  
Åsa K. Rennermalm ◽  
Richard G. Lathrop ◽  
Matthew. G. Cooper

The presence of shadows in remotely sensed images can reduce the accuracy of land surface classifications. Commonly used methods for removing shadows often use multi-spectral image analysis techniques that perform poorly for dark objects, complex geometric models, or shaded relief methods that do not account for shadows cast on adjacent terrain. Here we present a new method of removing topographic shadows using readily available GIS software. The method corrects for cast shadows, reduces the amount of over-correction, and can be performed on imagery of any spectral resolution. We demonstrate this method using imagery collected with an uncrewed aerial vehicle (UAV) over a supraglacial stream catchment in southwest Greenland. The structure-from-motion digital elevation model showed highly variable topography resulting in substantial shadowing and variable reflectance values for similar surface types. The distribution of bare ice, sediment, and water within the catchment was determined using a supervised classification scheme applied to the corrected and original UAV images. The correction resulted in an insignificant change in overall classification accuracy, however, visual inspection showed that the corrected classification more closely followed the expected distribution of classes indicating that shadow correction can aid in identification of glaciological features hidden within shadowed regions. Shadow correction also caused a substantial decrease in the areal coverage of dark sediment. Sediment cover was highly dependent on the degree of shadow correction (k coefficient), yet, for a correction coefficient optimized to maximize shadow brightness without over-exposing illuminated surfaces, terrain correction resulted in a 49% decrease in the area covered by sediment and a 29% increase in the area covered by water. Shadow correction therefore reduces the overestimation of the dark surface coverage due to shadowing and is a useful tool for investigating supraglacial processes and land cover change over a wide variety of complex terrain.


2021 ◽  
Author(s):  
Evan Gowan ◽  
Sebastian Hinck ◽  
Lu Niu ◽  
Caroline Clason ◽  
Gerrit Lohmann

Spatially variable bed conditions govern how ice sheets behave at glacial time scales (>1000 years). The presence or lack of complete sediment cover is responsible for changes in dynamics between the core and peripheral regions of the Laurentide and Fennoscandian ice sheets. A key component of this change is because sliding is promoted when unconsolidated sediments below the ice become water saturated, and become weaker than the overlying ice. We present an ice sheet sliding module for the Parallel Ice Sheet Model (PISM) that takes into account changes in sediment cover. This model routes meltwater, derived from the surface and base of the ice sheet, towards the margin of the ice sheet. The sliding is accomplished through water saturated sediments, or through hard-bedded sliding induced by changes in the effective pressure in the water drainage system. In areas with continuous, water saturated sediments, sliding is almost always accomplished through sediment deformation, except during times of high discharge. In areas with even a small portion of bare rock, sliding is dependent on the seasonally changing supply of water. Our model causes a more rapid buildup of ice sheets compared to a sediment-deformation only model, especially into areas with complete sediment cover.


Sign in / Sign up

Export Citation Format

Share Document