Landscape evolution space and the relative importance of geomorphic processes and controls

Geomorphology ◽  
2009 ◽  
Vol 109 (3-4) ◽  
pp. 79-85 ◽  
Author(s):  
Jonathan D. Phillips
2011 ◽  
Vol 75 (2) ◽  
pp. 378-384 ◽  
Author(s):  
Ivar Berthling ◽  
Bernd Etzelmüller

AbstractRecent accounts suggest that periglacial processes are unimportant for large-scale landscape evolution and that true large-scale periglacial landscapes are rare or non-existent. The lack of a large-scale topographical fingerprint due to periglacial processes may be considered of little relevance, as linear process–landscape development relationships rarely can be substantiated. Instead, periglacial landscapes may be classified in terms of specific landform associations. We propose “cryo-conditioning”, defined as the interaction of cryotic surface and subsurface thermal regimes and geomorphic processes, as an overarching concept linking landform and landscape evolution in cold regions. By focusing on the controls on processes, this concept circumvents scaling problems in interpreting long-term landscape evolution derived from short-term processes. It also contributes to an unambiguous conceptualization of periglacial geomorphology. We propose that the development of several key elements in the Norwegian geomorphic landscape can be explained in terms of cryo-conditioning.


1980 ◽  
Vol 25 (91) ◽  
pp. 109-124 ◽  
Author(s):  
Colin E. Thorn ◽  
Kevin Hall

AbstractNivation is a collective noun identifying a set of geomorphic processes, comprised of an indeterminate number of elements and of unknown relative importance, for which there is little likelihood of ever producing a precise definition. Instead, attention should first be directed towards the relationships between snow-packs and individual geomorphic processes. The relationship between freezing amplitude in the bedrock, snow cover, and aspect at an Arctic site in northern Norway and an alpine site in the Front Range, Colorado, U.S.A. is complex. Comparison of field data and laboratory criteria permit several conflicting interpretations. If oscillations across 0°C, regardless of freezing amplitude, are critical, the alpine site is potentially a more active freeze-thaw weathering regime, with a primary springtime peak and a secondary fall peak. If a freezing amplitude of –5°C is required for effective freeze-thaw weathering then the alpine site is largely inactive and the Arctic active (but with only a single fall peak). Chemical weathering is much more important at snow-patch sites than has traditionally been recognized. Mass wasting at colluvial sites subject to snow patches is dominated by interaction between overland flow and solifluction when the site is unvegetated, and by solifluction when it is vegetated. Given contemporary knowledge of snow and glacial geomorphology, there appears to be no threshold, only differences of intensity. Resolution of the disruptive mechanism associated with bedrock freezing and its constraining temperature and moisture requirements is the most pressing present problem in the field of snow geomorphology.


2012 ◽  
Vol 91 (1-2) ◽  
pp. 233-244 ◽  
Author(s):  
G. Verstraeten

AbstractGeomorphology as a scientific discipline has underwent major developments since the mid 20th century. From its original descriptive nature aiming to understand landscape evolution, it developed towards a more process-based oriented discipline. To a large extent this evolution followed a quantitative approach whereby modelling becomes more and more important. A schism between applied or engineering geomorphology and system-based geomorphology aiming at understanding landscape change emerges in the 1950-1960's. Only at the end of the 20th century – early 21st century, integration of quantitative field-based approaches on longer term issues of landscape evolution with numerical modelling emerges. This is particularly true for the Holocene for which the importance of human impact on geomorphic processes and landforms became acknowledged. With respect to landscape evolution on much longer timescales, the development of tectonic geomorphology becomes apparent. In this paper, some evolution of ideas and trends within geomorphology with respect to understanding landscape dynamics are summarised and put into the career perspective of Jef Vandenberghe.


Geomorphology ◽  
2013 ◽  
Vol 185 ◽  
pp. 67-77 ◽  
Author(s):  
Alan Kasprak ◽  
Francis J. Magilligan ◽  
Keith H. Nislow ◽  
Carl E. Renshaw ◽  
Noah P. Snyder ◽  
...  

Author(s):  
Lisa Tranel ◽  
James Spotila

Erosional processes influence topographic relief in mountain landscapes, but the spatial variation between differential processes and influence on tectonic uplift is poorly understood. Deep canyons and adjacent high peaks distinguish the Teton Mountains from nearby ranges, making it an ideal location to study how glacial, fluvial, and hillslope erosion interact to maintain high topographic relief. The purpose of this study is to quantify erosion rates of individual geomorphic processes in this complex system using a variety of techniques to see how each process contributes to landscape evolution in this mountain range.


1980 ◽  
Vol 25 (91) ◽  
pp. 109-124 ◽  
Author(s):  
Colin E. Thorn ◽  
Kevin Hall

AbstractNivation is a collective noun identifying a set of geomorphic processes, comprised of an indeterminate number of elements and of unknown relative importance, for which there is little likelihood of ever producing a precise definition. Instead, attention should first be directed towards the relationships between snow-packs and individual geomorphic processes. The relationship between freezing amplitude in the bedrock, snow cover, and aspect at an Arctic site in northern Norway and an alpine site in the Front Range, Colorado, U.S.A. is complex. Comparison of field data and laboratory criteria permit several conflicting interpretations. If oscillations across 0°C, regardless of freezing amplitude, are critical, the alpine site is potentially a more active freeze-thaw weathering regime, with a primary springtime peak and a secondary fall peak. If a freezing amplitude of –5°C is required for effective freeze-thaw weathering then the alpine site is largely inactive and the Arctic active (but with only a single fall peak). Chemical weathering is much more important at snow-patch sites than has traditionally been recognized. Mass wasting at colluvial sites subject to snow patches is dominated by interaction between overland flow and solifluction when the site is unvegetated, and by solifluction when it is vegetated. Given contemporary knowledge of snow and glacial geomorphology, there appears to be no threshold, only differences of intensity. Resolution of the disruptive mechanism associated with bedrock freezing and its constraining temperature and moisture requirements is the most pressing present problem in the field of snow geomorphology.


2001 ◽  
Vol 120 (5) ◽  
pp. A678-A679
Author(s):  
G ANDERSON ◽  
S WILKINS ◽  
T MURPHY ◽  
G CLEGHORN ◽  
D FRAZER

Sign in / Sign up

Export Citation Format

Share Document