landscape change
Recently Published Documents


TOTAL DOCUMENTS

1055
(FIVE YEARS 211)

H-INDEX

59
(FIVE YEARS 6)

2022 ◽  
Vol 266 ◽  
pp. 109435
Author(s):  
Gillian Chow-Fraser ◽  
Nicole Heim ◽  
John Paczkowski ◽  
John P. Volpe ◽  
Jason T. Fisher

2022 ◽  
Vol 14 (2) ◽  
pp. 292
Author(s):  
Chunhua Qian ◽  
Hequn Qiang ◽  
Changyou Qin ◽  
Zi Wang ◽  
Mingyang Li

Landscape change is a dynamic feature of landscape structure and function over time which is usually affected by natural and human factors. The evolution of rocky desertification is a typical landscape change that directly affects ecological environment governance and sustainable development. Guizhou is one of the most typical subtropical karst landform areas in the world. Its special karst rocky desertification phenomenon is an important factor affecting the ecological environment and limiting sustainable development. In this paper, remote sensing imagery and machine learning methods are utilized to model and analyze the spatiotemporal variation of rocky desertification in Guizhou. Based on an improved CA-Markov model, rocky desertification scenarios in the next 30 years are predicted, providing data support for exploration of the evolution rule of rocky desertification in subtropical karst areas and for effective management. The specific results are as follows: (1) Based on the dynamic degree, transfer matrix, evolution intensity, and speed, the temporal and spatial evolution of rocky desertification in Guizhou from 2001 to 2020 was analyzed. It was found that the proportion of no rocky desertification (NRD) areas increased from 48.86% to 63.53% over this period. Potential rocky desertification (PRD), light rocky desertification (LRD), middle rocky desertification (MRD), and severe rocky desertification (SRD) continued to improve, with the improvement showing an accelerating trend after 2010. (2) An improved CA-Markov model was used to predict the future rocky desertification scenario; compared to the traditional CA-Markov model, the Lee–Sallee index increased from 0.681 to 0.723, and figure of merit (FOM) increased from 0.459 to 0.530. The conclusions of this paper are as follows: (1) From 2001 to 2020, the evolution speed of PRD was the fastest, while that of SRD was the slowest. Rocky desertification control should not only focus on areas with serious rocky desertification, but also prevent transformation from NRD to PRD. (2) Rocky desertification will continue to improve over the next 30 years. Possible deterioration areas are concentrated in high-altitude areas, such as the south of Bijie and the east of Liupanshui.


Author(s):  
Ru Chen ◽  
Chunbo Huang

Rapid urbanization and industrialization and enhanced ecological protection measures have greatly influenced landscape change, which has exacerbated regional landscape competition and conflicts and indirectly affected the supply of ecosystem services. Clarifying the relationship between ecosystem service change and landscape change is useful for understanding the impact of ecosystem conversion on socio-economic development and providing a knowledge base for relevant policy decisions. In this study, we used remote sensing technology to process Landsat TM/ETM+/OLI imageries, combined with transformation analysis and kernel density analysis to study the spatial and temporal characteristics of land use change in Wuhan City from 1980 to 2020. We also estimated the ESV in the region using the improved unit area value equivalent method to reveal the trends of ESV changes in Wuhan. The results showed that land use changes in Wuhan during 1980–2020 occurred mainly in terms of decreases in farmland, forestland, and bare land, as well as increases in built-up land and water bodies. The built-up land was mainly concentrated in the main urban areas, but its area in each suburban area has increased in recent years. In contrast, farmland was mainly distributed in suburban areas, and its area has been decreasing in recent years due to the impact of urban expansion. However, the reduction is compensated for by the reclamation of ecological land such as grassland and forestland, which has aggravated the loss of ecosystem service values in the study area. In addition, human activities such as urban expansion have increased the demand for water resources, while also leading to ecological problems such as water scarcity and water quality degradation, which have caused serious losses to key ecosystem services in Wuhan city. Therefore, in order to alleviate the competition and conflicts in the landscape and mitigate the loss of ecosystem service values in this area, we have proposed some constructive suggestions for future urban planning and water quality improvements in Wuhan. The focus of these suggestions is on controlling the expansion of built-up land, as well as the conservation of ecological land and resource protection. Meanwhile, our findings can also provide reference information for land resource planning and ecological monitoring, and help researchers to understand the contribution of ecosystem service functions in relation to socio-economic development.


Author(s):  
Clare Wilkinson ◽  
Angus H. Macfarlane ◽  
Daniel C. H. Hikuroa ◽  
Clint McConchie ◽  
Matiu Payne ◽  
...  

2021 ◽  
Vol 583 ◽  
pp. 110659
Author(s):  
Samuel K. Marx ◽  
William Reynolds ◽  
Jan-Hendrik May ◽  
Matthew S. Forbes ◽  
Nicola Stromsoe ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (23) ◽  
pp. 4731
Author(s):  
Whittaker Schroder ◽  
Timothy Murtha ◽  
Charles Golden ◽  
Andrew K. Scherer ◽  
Eben N. Broadbent ◽  
...  

Airborne laser scanning has proven useful for rapid and extensive documentation of historic cultural landscapes after years of applications mapping natural landscapes and the built environment. The recent integration of unoccupied aerial vehicles (UAVs) with LiDAR systems is potentially transformative and offers complementary data for mapping targeted areas with high precision and systematic study of coupled natural and human systems. We report the results of data capture, analysis, and processing of UAV LiDAR data collected in the Maya Lowlands of Chiapas, Mexico in 2019 for a comparative landscape study. Six areas of archaeological settlement and long-term land-use reflecting a diversity of environments, land cover, and archaeological features were studied. These missions were characterized by areas that were variably forested, rugged, or flat, and included pre-Hispanic settlements and agrarian landscapes. Our study confirms that UAV LiDAR systems have great potential for broader application in high-precision archaeological mapping applications. We also conclude that these studies offer an important opportunity for multi-disciplinary collaboration. UAV LiDAR offers high-precision information that is not only useful for mapping archaeological features, but also provides critical information about long-term land use and landscape change in the context of archaeological resources.


2021 ◽  
Vol 13 (22) ◽  
pp. 12664
Author(s):  
Gergő Németh ◽  
Dénes Lóczy ◽  
Péter Gyenizse

This paper presents the trends of landscape change in the marshes on the southern shore of Lake Balaton, a wetland profoundly transformed by human activities. The study does not only deal with alterations in the areal proportions of land use classes but also quantitatively analyses landscape pattern, comparing landscape metrics on different dates. Based on the findings, proposals for rehabilitation are made. Through the restoration of wetland habitats, the provision level of ecosystem services can be raised. Landscape change was investigated from 1783 to 2020. For this purpose, archive maps were digitized, CORINE land cover datasets corrected by Sentinel-2 imagery were employed and from the vector data, the proportions of land use classes were calculated. For landscape pattern perimeter, area, neighbourhood and diversity metrics were used, calculated by ArcGIS vLATE plugin. It was pointed out that in land cover, the share of wetlands considerably declined over the centuries but in recent decades somewhat expanded. In the 20th century, grasslands were the predominant land use class, but with the spread of other categories, land use has become more complex. Landscape metrics show an increased fragmentation of natural habitats, a higher number of patches and edge density, leading to higher landscape diversity. Rehabilitation proposals include the establishment of rainwater retention reservoirs, the conversion of arable land which cannot be cultivated profitably to close-to-natural classes (first of all, grasslands) and the plantation of gallery forests of native tree species along canals. In comparison with other regions, similar temporal trends and spatial distributions are observed. For instance, the internationally well-known transformation of the Doñana wetland started later but was more intensive than in Hungary.


Sign in / Sign up

Export Citation Format

Share Document