scholarly journals The tectonic geomorphology of bedrock scarps on active normal faults in the Italian Apennines mapped using combined ground penetrating radar and terrestrial laser scanning

Geomorphology ◽  
2015 ◽  
Vol 237 ◽  
pp. 38-51 ◽  
Author(s):  
A. Bubeck ◽  
M. Wilkinson ◽  
G.P. Roberts ◽  
P.A. Cowie ◽  
K.J.W. McCaffrey ◽  
...  
Author(s):  
Andrea Securo ◽  
Emanuele Forte ◽  
Davide Martinucci ◽  
Simone Pillon ◽  
Renato R Colucci

This study investigates the application of a terrestrial structure from motionmulti-view stereo (SfM-MVS) approach combined with ground-penetrating radar (GPR) surveys for monitoring the surface topographic change of two permanent ice deposits in caves located in the Julian Alps (south-eastern European Alps). This method allows accurate calculation of both seasonal and annual mass balance, estimating the amount of ice inside caves. The ground-based SfM approach represents a low-cost workflow with very limited logistical problems of transportation and human resources and a fast acquisition time, all key factors in such extreme environments. Under optimal conditions, SfM-MVS allows sub-centimetric resolution results, comparable to more expensive and logistically demanding surveys such as terrestrial laser scanning (TLS). Fourteen SfM acquisitions were made between the 2017–2020 ablation seasons (i.e. July–October) while 2 GPR surveys were acquired in 2012. The obtained dense point clouds and digital terrain models (DTMs) made possible a reliable calculation of topographic changes and mass balance rates during the analysed period. The integration of SfM-MVS products with GPR surveys provided comprehensive imaging of the ice thickness and the total ice volume present in each of the caves, proving to be a reliable, low cost and multipurpose methodology ideal for long-term monitoring.


2020 ◽  
Author(s):  
Oksana Lunina ◽  
Ivan Denisenko

<div> <p>Tectonic displacement is one of the important parameters in determining the seismic potential of an active fault. Its distribution along the fault strike is highly variable; therefore, when assessing seismic hazard, both the quality and the number of measurements of single-event throws are essential. We reconstructed and studied peculiarities of distribution of vertical displacements, which occurred on the land-based part of the Delta fault during the devasting M~7.5 Thagan earthquake of 12 January 1862. Morphologically, the seismogenic structure is expressed by the fault scarp in unconslolidated Holocene sediments, which underwent significant liquefaction and fluidization during the seismic event. In space, the fault scarp coincides with the lacustrine-deltoid and alluvial-deltoid terraces of Lake Baikal and the Selenga river and complicated by eolian deposits.</p> <p>As a basic method, we used ground-penetrating radar (GPR) in combination with data from shallow drilling, trenching and analysis of seven topographic profiles. By measuring near-field displacements at the fault planes (brittle component) and far-field displacement at a distance from the fault plane (sum of brittle and ductile components according to Homberg et al. (2017)) on GPR sections, we subtracted folding component of the total throw. Besides, we considered a number of other parameters in relation with the value of the last single-event offset in the upper sedimentary layer at a depth of the first meters. As a result, it was found that the displacement during the Tsagan earthquake occurred under NW-SE extension as motion on a stepped system of normal faults with a dip of the major plane to the NW at angles 56–77°. The total throws from GPR data on each of seven profiles were 3.83 m, 9.59 m, 2.4 m, 4.27 m, 9.28 m, 5.23 m, and 1.81 m, which are aligned with vertical fault displacements H1 with an error from 0.03 to 0.47 m. H1 was defined as a vertical distance between the intersections of the fault plane, and planes formed by the displaced original geomorphic surfaces (McCalpin, 2009). The brittle components were 2.32 m, 5.54 m, 1.93 m, 3.0 m, 6.07 m, 3.2 m, and 1.58 m, respectively. The contribution of the ductile component to the total displacement varies from 13% to 42%, the visible fault damage zone widths are from 2.55 m to 20 m. The maximal contributions of the ductile component correspond to minimal fault dips of the major fault plane and, as a whole, to the largest fault damage zone widths, which also correlate well with the offset values.</p> <p>The structural features of the rupture zones and peculiarities of throw distribution in unconsolidated sediments should be taken into account in order to avoid underestimating the magnitudes of the normal fault earthquakes and their seismic effect. In the case of soft sediments of mixed rheology (competent and incompetent), obviously, one should expect large values of total displacements and wider zones of deformations, in comparison with homogeneous sections. Acknowledgments: The reported study was partly funded by RFBR, project number 19-35-90003.</p> </div>


2017 ◽  
Vol 88 (1) ◽  
pp. 39-59 ◽  
Author(s):  
Jack Mason ◽  
Sascha Schneiderwind ◽  
Aggelos Pallikarakis ◽  
Silke Mechernich ◽  
Ioannis Papanikolaou ◽  
...  

AbstractMany active normal faults throughout the Aegean juxtapose footwall limestone against hanging-wall colluvium. In places, this colluvium becomes cemented and forms large hanging-wall lobes or sheets of varying thickness attached to the bedrock fault. Investigations at the Lastros Fault in eastern Crete allow us to define criteria to distinguish between cemented colluvium and fault cataclasite (tectonic breccia), which is often present at bedrock faults. Macro- and microscopic descriptions of the cemented colluvium show that the colluvium was originally deposited through both rockfalls and debris flows. Stable isotope analyses of oxygen and carbon from 83 samples indicate that cementation then occurred through meteoric fluid flow in the fault zone from springs at localised positions along strike. Palaeotemperature calculations of the parent water from which the calcite cement precipitated are indicative of a climate between 7°C and 10°C colder than Crete’s present average annual temperature. This most likely represents the transition between a glacial and interglacial period in the late Pleistocene. Ground-penetrating radar also indicates that cemented colluvium is present in the hanging-wall subsurface below uncemented colluvium. Using these results, a model for the temporal development of the fault and formation of the cemented colluvium is proposed.


2021 ◽  
Vol 15 (1) ◽  
pp. 31-45
Author(s):  
Dominik Merkle ◽  
Carsten Frey ◽  
Alexander Reiterer

AbstractMobile mapping vehicles, equipped with cameras, laser scanners (in this paper referred to as light detection and ranging, LiDAR), and positioning systems are limited to acquiring surface data. However, in this paper, a method to fuse both LiDAR and 3D ground penetrating radar (GPR) data into consistent georeferenced point clouds is presented, allowing imaging both the surface and subsurface. Objects such as pipes, cables, and wall structures are made visible as point clouds by thresholding the GPR signal’s Hilbert envelope. The results are verified with existing utility maps. Varying soil conditions, clutter, and noise complicate a fully automatized approach. Topographic correction of the GPR data, by using the LiDAR data, ensures a consistent ground height. Moreover, this work shows that the LiDAR point cloud, as a reference, increases the interpretability of GPR data and allows measuring distances between above ground and subsurface structures.


2019 ◽  
Author(s):  
S. Cafiso ◽  
A. Di Graziano ◽  
D. Goulias ◽  
M. Mangiameli ◽  
G. Mussumeci

Sign in / Sign up

Export Citation Format

Share Document