Seasonal-scale abrasion and quarrying patterns from a two-dimensional ice-flow model coupled to distributed and channelized subglacial drainage

Geomorphology ◽  
2014 ◽  
Vol 219 ◽  
pp. 176-191 ◽  
Author(s):  
Flavien Beaud ◽  
Gwenn E. Flowers ◽  
Sam Pimentel
2003 ◽  
Vol 49 (167) ◽  
pp. 527-538 ◽  
Author(s):  
Emmanuel Le Meur ◽  
Christian Vincent

AbstractA two-dimensional ice-flow model based on the shallow-ice approximation (SIA) is used to investigate the dynamics of Glacier de Saint-Sorlin, France. This glacier is well suited for this kind of study. First, the particular geometry of the glacier itself as well as that of the bedrock surface allows for correct applicability of the SIA (zeroth-order equations), provided that thickness changes and termini positions rather than short-scale dynamics are considered. Secondly, the wealth of available data for the glacier including mass-balance series and records of glacier changes provides a reliable forcing and a powerful constraining set for the model. Steady-state simulations show realistic results and the capabilities of the model in reproducing the glacier extent at the beginning of the 20th century. An extensive parameter study of ice rheology and sliding intensity is also carried out and the results are checked against the thickness changes as well as the glacier termini positions since 1905. It is possible to find a parameter combination that best matches these two types of data with an ice-flow rate factor of 2 × 10−24 Pa−3 s−1 and a Weertman-type sliding factor of 5 × 10−14 m8 N−3 a−1 which both appear to be in agreement with similar inferences from recent modelling attempts.


2020 ◽  
Vol 141 ◽  
pp. 104526 ◽  
Author(s):  
Yuzhe Wang ◽  
Tong Zhang ◽  
Cunde Xiao ◽  
Jiawen Ren ◽  
Yanfen Wang

2021 ◽  
Author(s):  
Tamara Annina Gerber ◽  
Christine Schøtt Hvidberg ◽  
Sune Olander Rasmussen ◽  
Steven Franke ◽  
Giulia Sinnl ◽  
...  

2016 ◽  
Author(s):  
Yuzhe Wang ◽  
Tong Zhang ◽  
Jiawen Ren ◽  
Xiang Qin ◽  
Yushuo Liu ◽  
...  

Abstract. En-glacial thermal conditions are very important for controlling ice rheology. By combining in situ measurements and a two-dimensional thermo-mechanically coupled ice flow model, we investigate the present thermal status of the largest valley glacier (Laohugou No. 12; LHG12) in Mt. Qilian Shan in the arid region of western China. Our model results suggest that LHG12, previously considered as fully cold, is probably polythermal, with a lower temperate ice layer (approximately 5.4 km long) overlain by an upper layer of cold ice over a large region of the ablation area. Generally, modelled ice surface velocities match in situ observations in the east branch (mainstream) well but clearly underestimate the ice surface velocities near the glacier terminus because the convergent flow of the west branch is ignored. The modelled ice temperatures agree closely with the in situ measurements (with biases less than 0.5 K) from a deep borehole (110 m) in the upper ablation area. The model results were highly sensitive to surface thermal boundary conditions, for example, surface air temperature and near-surface ice temperature. In this study, we suggest using a combination of surface air temperatures and near-surface ice temperatures (following the work of Wohlleben et al., 2009) as Dirichlet surface thermal conditions to include the contributions of the latent heat released during refreezing of surface melt-water in the accumulation zone. Like many other alpine glaciers, strain heating is the most important parameter controlling the en-glacial thermal structure in LHG12.


2018 ◽  
Vol 12 (3) ◽  
pp. 851-866 ◽  
Author(s):  
Yuzhe Wang ◽  
Tong Zhang ◽  
Jiawen Ren ◽  
Xiang Qin ◽  
Yushuo Liu ◽  
...  

Abstract. By combining in situ measurements and a two-dimensional thermomechanically coupled ice flow model, we investigate the thermomechanical features of the largest valley glacier (Laohugou Glacier No. 12; LHG12) on Qilian Shan located in the arid region of western China. Our model results suggest that LHG12, previously considered as fully cold, is probably polythermal, with a lower temperate ice layer overlain by an upper layer of cold ice over a large region of the ablation area. Modelled ice surface velocities match well with the in situ observations in the east branch (main branch) but clearly underestimate those near the glacier terminus, possibly because the convergent flow is ignored and the basal sliding beneath the confluence area is underestimated. The modelled ice temperatures are in very good agreement with the in situ measurements from a deep borehole (110 m deep) in the upper ablation area. The model results are sensitive to surface thermal boundary conditions, for example surface air temperature and near-surface ice temperature. In this study, we use a Dirichlet surface thermal condition constrained by 20 m borehole temperatures and annual surface air temperatures. Like many other alpine glaciers, strain heating is important in controlling the englacial thermal structure of LHG12. Our transient simulations indicate that the accumulation zone becomes colder during the last two decades as a response to the elevated equilibrium line altitude and the rising summer air temperatures. We suggest that the extent of accumulation basin (the amount of refreezing latent heat from meltwater) of LHG12 has a considerable impact on the englacial thermal status.


Author(s):  
B. M. Minchew ◽  
C. R. Meyer

Glacier surges are quasi-periodic episodes of rapid ice flow that arise from increases in slip rate at the ice–bed interface. The mechanisms that trigger and sustain surges are not well understood. Here, we develop a new model of incipient surge motion for glaciers underlain by sediments to explore how surges may arise from slip instabilities within a thin layer of saturated, deforming subglacial till. Our model represents the evolution of internal friction, porosity and pore water pressure within the till as functions of the rate and history of shear deformation, and couples the till mechanics to a simple ice-flow model. Changes in pore water pressure govern incipient surge motion, with less permeable till facilitating surging because dilation-driven reductions in pore water pressure slow the rate at which till tends towards a new steady state, thereby allowing time for the glacier to thin dynamically. The reduction of overburden (and thus effective) pressure at the bed caused by dynamic thinning of the glacier sustains surge acceleration in our model. The need for changes in both the hydromechanical properties of the till and the thickness of the glacier creates restrictive conditions for surge motion that are consistent with the rarity of surge-type glaciers and their geographical clustering.


Sign in / Sign up

Export Citation Format

Share Document